Low velocity water flow energy harvesting using vortex induced vibration and galloping

2019 ◽  
Vol 251 ◽  
pp. 113392 ◽  
Author(s):  
Weipeng Sun ◽  
Daoli Zhao ◽  
Ting Tan ◽  
Zhimiao Yan ◽  
Pengcheng Guo ◽  
...  
Author(s):  
Hong-Xiang Zou ◽  
Ke-Xiang Wei ◽  
Lin-Chuan Zhao ◽  
Wen-Ming Zhang ◽  
Lei Zuo ◽  
...  

Abstract Piezoelectric flow energy harvesting can be a potential way to yield endless electrical energy for small mechanical systems and wireless sensors. We propose a novel magnetically coupled bistable vibration energy harvester using wings for the applications in the water environment. The water flow energy can be harvested through the induced vibration of wings. The flextensional transducer can be packaged conveniently by using non-contact magnetic coupling mechanism. The magnetic force is amplified by the flextensional structure and transferred to the piezoelectric layer, thereby achieving higher power density and better reliability. A prototype was fabricated and tested in a water flume, which attended a maximum power of about 400 μW and the average power of 55 μW at the water flow velocity of 4 m/s. No significant variation occurred to the performance of the harvester after five days of continuous operation in the water, which indicates that the magnetically coupled vibration energy harvesting method has high reliability in the underwater environment.


Nano Energy ◽  
2019 ◽  
Vol 61 ◽  
pp. 454-461 ◽  
Author(s):  
Yupeng Liu ◽  
Youbin Zheng ◽  
Tinghua Li ◽  
Daoai Wang ◽  
Feng Zhou

2009 ◽  
Vol 46 (4) ◽  
pp. 346-353
Author(s):  
Hiroshige KUMAMARU ◽  
Takashi KANEDA ◽  
Kenji FUJITA ◽  
Hisashi ISHITOBI ◽  
Yoshihiro KUWATA ◽  
...  

Author(s):  
Jesse J. French ◽  
Colton T. Sheets

Wind energy capture in today’s environment is often focused on producing large amounts of power through massive turbines operating at high wind speeds. The device presented by the authors performs on the extreme opposite scale of these large wind turbines. Utilizing vortex induced vibration combined with developed and demonstrated piezoelectric energy harvesting techniques, the device produces power consistent with peer technologies in the rapidly growing field of micro-energy harvesting. Vortex-induced vibrations in the Karman vortex street are the catalyst for energy production of the device. To optimize power output, resonant frequency of the harvester is matched to vortex shedding frequency at a given wind speed, producing a lock-on effect that results in the greatest amplitude of oscillation. The frequency of oscillation is varied by altering the effective spring constant of the device, thereby allowing for “tuning” of the device to specific wind environments. While localized wind conditions are never able to be predicted with absolute certainty, patterns can be established through thorough data collection. Sampling of local wind conditions led to the design and testing of harvesters operating within a range of wind velocities between approximately 4 mph and 25 mph. For the extremities of this range, devices were constructed with resonant frequencies of approximately 17 and 163 Hz. Frequency variation was achieved through altering the material composition and geometry of the energy harvester. Experimentation was performed on harvesters to determine power output at optimized fluid velocity, as well as above and below. Analysis was also conducted on shedding characteristics of the device over the tested range of wind velocities. Computational modeling of the device is performed and compared to experimentally produced data.


2013 ◽  
Vol 52 (10S) ◽  
pp. 10MB01 ◽  
Author(s):  
Kyoung-Bum Kim ◽  
Chang Il Kim ◽  
Young Hun Jeong ◽  
Jeong-Ho Cho ◽  
Jong-Hoo Paik ◽  
...  

2016 ◽  
Vol 773 ◽  
pp. 012019 ◽  
Author(s):  
Sebastien Boisseau ◽  
Alexandre-Benoit Duret ◽  
Matthias Perez ◽  
Emmanuel Jallas ◽  
Eric Jallas

Sign in / Sign up

Export Citation Format

Share Document