Probability-driven transmission expansion planning with high-penetration renewable power generation: A case study in northwestern China

2019 ◽  
Vol 255 ◽  
pp. 113610 ◽  
Author(s):  
Z. Liang ◽  
H. Chen ◽  
S. Chen ◽  
Z. Lin ◽  
C. Kang
Author(s):  
Sharmini Nakkela

Abstract: Modern study about utilizing energy from renewable energy sources was stimulus due to emerging oil crisis in older days due to uncontrolled use of conventional energy sources. Renewable Power Generation from wind and solar energy has become a significant proportion for the overall power generation in the grid. High penetration of Renewable Power Generation (RPG’s) effectreliable operation of bulk power system due to fluctuation of frequency and voltage of the network. The main objectives of high penetration of Renewable Power Generations in distribution system are Regulation of voltage, Mitigating voltage fluctuations due to flickers and Frequency control. The design and control of voltage regulation system using smart loads (SL’s) under large penetration of renewable energy system in distribution level is to be studied with the help of FACT devices like Static Compensator (STATCOM) and It is one of the fast active devices with accurate voltage regulation capability and most importantly for the sensitive/critical loads. Electric spring (ES) is proposed as compelling technique for guideline of framework voltage under fluctuating RPG's with next to no guide of correspondence framework [1]. It is a converter-based framework with self-commutated switches in span design, which is associated with non-basic burdens in series to go about as savvy load. These Smart Loads are controlled to direct voltage across basic burdens and hence partaking popular side administration. Expanded entrance of RPG’s, basically factor speed wind energy transformation framework is having impact on voltage and power quality [1][2]. In this paper, A contextual analysis of impact of variable speed wind energy framework on voltage is completed and which is demonstrated with fluctuating breeze speed. Execution examination of keen burdens are to be contrasted and existing receptive power compensator burdens and Improvement in voltage profile on test feeder is directed on a 3 Bus system and 15 Bus system. Keywords: Renewable energy system (RES), Electric spring (ES), STATCOM, Voltage Flicker, Smart load


2020 ◽  
Vol 31 (2) ◽  
pp. 461-470
Author(s):  
Arthur N. de Paula ◽  
Edimar J. de Oliveira ◽  
Leonardo W. de Oliveira ◽  
Leonardo M. Honório

2016 ◽  
Vol 17 (4) ◽  
pp. 401-423 ◽  
Author(s):  
Ishan Sharan ◽  
R. Balasubramanian

Abstract Worldwide thrust is being provided in generation of electricity from wind. Planning for the developmental needs of wind based power has to be consistent with the objective and basic framework of overall resource planning. The operational issues associated with the integration of wind power must be addressed at the planning stage. Lack of co-ordinated planning of wind turbine generators, conventional generating units and expansion of the transmission system may lead to curtailment of wind power due to transmission inadequacy or operational constraints. This paper presents a generation expansion planning model taking into account fuel transportation and power transmission constraints, while addressing the operational issues associated with the high penetration of wind power. For analyzing the operational issues, security constrained unit commitment algorithm is embedded in the integrated generation and transmission expansion planning model. The integrated generation and transmission expansion planning problem has been formulated as a mixed integer linear problem involving both binary and continuous variables in GAMS. The model has been applied to the expansion planning of a real system to illustrate the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document