A multi-objective optimization strategy for the optimal control scheme of pumped hydropower systems under successive load rejections

2020 ◽  
Vol 261 ◽  
pp. 114474 ◽  
Author(s):  
Xinjie Lai ◽  
Chaoshun Li ◽  
Jianzhong Zhou ◽  
Yongchuan Zhang ◽  
Yonggang Li
Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1801
Author(s):  
Chenyun Pan ◽  
Shengyu Tao ◽  
Hongtao Fan ◽  
Mengyao Shu ◽  
Yong Zhang ◽  
...  

Optimal operation of energy storage systems plays an important role in enhancing their lifetime and efficiency. This paper combines the concepts of the cyber–physical system (CPS) and multi-objective optimization into the control structure of the hybrid energy storage system (HESS). Owing to the time-varying characteristics of HESS, combining real-time data with physical models via CPS can significantly promote the performance of HESS. The multi-objective optimization model designed in this paper can improve the utilization of supercapacitors, reduce energy consumption, and prevent the state of charge (SOC) of HESS from exceeding the limitation. The new control scheme takes the characteristics of the components of HESS into account and is beneficial in reducing battery short-term power cycling and high discharge currents. The rain-flow counting algorithm is applied for battery life prediction to quantify the benefits of the HESS under the control scheme proposed. A much better power-sharing relationship between the supercapacitor and the lithium–ion battery (LiB) can be observed from the SIMULINK results and the case study with our new control scheme. Moreover, compared to the traditional low-pass filter control method, the battery lifetime is quantifiably increased from 3.51 years to 10.20 years while the energy efficiency is improved by 1.56%.


Author(s):  
Sirwan Ghavami ◽  
Mohammad-Hasan Khademi ◽  
Farkhondeh Hemmati ◽  
Ali Fazeli ◽  
Jamshid Mohammadi-Roshandeh

Author(s):  
Masahide Matsumoto ◽  
Jumpei Abe ◽  
Masataka Yoshimura

Abstract Generally, two types of priorities are considered among multiple objectives in the design of machine structures. One of these objectives is named the “hard objective”, which is the absolutely indispensable design requirement. The other is called the “soft objective”, which has lower priority order. This paper proposes a multi-objective structural optimization strategy with priority ranking of those design objectives. Further, this strategy is demonstrated on the actual example of a motorcycle frame structural design which has three design objectives, (1) an increase in static torsional rigidity, (2) a reduction of dynamic response level, and (3) a decrease in the weight of the motorcycle frame.


Sign in / Sign up

Export Citation Format

Share Document