Changes in concentrations and source of nitrogen along the Potomac River with watershed land use

2021 ◽  
pp. 105006
Author(s):  
Shuiwang Duan ◽  
Sujay S. Kaushal ◽  
Erik J. Rosenfeldt ◽  
Jinliang Huang ◽  
Sudhir Murthy
2021 ◽  
Vol 933 (1) ◽  
pp. 012010
Author(s):  
S A Nurhayati ◽  
M Marselina ◽  
A Sabar

Abstract Increasing population growth is one of the impacts of the growth of a city or district in an area. This also happened in the Cimahi watershed area. As the population grows, so does the need for land which increases the land-use change in the Cimahi watershed. Land-use changes will affect the surrounding environment and one of them is the river, especially river water quality. As a watershed area, there is one main river that is the source of life as well as the Cimahi watershed, whose main river is the Cimahi River. The purpose of this study was calculated the relationship between land-use change in the Cimahi watershed and the water quality parameters of the Cimahi River. The correlation between the two was calculated using Pearson correlation. Water quality parameters can be seen based on BOD and DO values. BOD and DO values are the opposite because good water quality has high DO values and low BOD values. The correlation between land-use change and BOD was 0.328 is in the area of settlements area. In contrast, to DO values, an increase in settlements/industrial zones will further reduce DO values so that both have a negative correlation, which is indicated by a value of -0,535. The correlation between settlements with pH and temperature values is 0.664 and 0.812. While the correlation between settlements with TSS and TDS values are 0.333 and 0.529, respectively. In this study, it can be seen that there is a relationship between the decline in water quality and changes in land use.


2012 ◽  
Vol 113 (1-3) ◽  
pp. 525-544 ◽  
Author(s):  
J. C. Carey ◽  
R. W. Fulweiler

2010 ◽  
Vol 34 (3) ◽  
pp. 292-311
Author(s):  
Kumar Amarendra Singh ◽  
Akshayaber Singh ◽  
Krishna Kishore Satapathy ◽  
Bindeshwari Prasad Singh Yadav ◽  
Ram Chandra

2005 ◽  
Vol 62 (12) ◽  
pp. 2740-2751 ◽  
Author(s):  
Jeff J Opperman ◽  
Kathleen A Lohse ◽  
Colin Brooks ◽  
N Maggi Kelly ◽  
Adina M Merenlender

Relationships between land use or land cover and embeddedness, a measure of fine sediment in spawning gravels, were examined at multiple scales across 54 streams in the Russian River Basin, California. The results suggest that coarse-scale measures of watershed land use can explain a large proportion of the variability in embeddedness and that the explanatory power of this relationship increases with watershed size. Agricultural and urban land uses and road density were positively associated with embeddedness, while the opposite was true for forest cover. The ability of land use and land cover to predict embeddedness varied among five zones of influence, with the greatest explanatory power occurring at the entire-watershed scale. Land use within a more restricted riparian corridor generally did not relate to embeddedness, suggesting that reach-scale riparian protection or restoration will have little influence on levels of fine sediment. The explanatory power of these models was greater when conducted among a subset of the largest watersheds (maximum r2 = 0.73) than among the smallest watersheds (maximum r2 = 0.46).


2017 ◽  
Vol 4 (2) ◽  
pp. 109
Author(s):  
Kunihiko Yoshino ◽  
Yudi Setiawan ◽  
Eikichi Shima

In this study, time series datasets of MODIS EVI (Enhanced Vegetation Index) data from 2002 and 2011 in the Brantas River watershed located in eastern Java, Indonesia were analyzed and classified to make ten land use maps for each year, in order to support watershed land use planning which takes into account local land use and trends in land use change. These land use maps with eight types of main land use categories were examined. During the 10 years period, forested area has expanded, while upland, paddy rice field, mixed garden and plantation have decreased. One of the reasons for this land use change is ascribed to tree planting under the joint forest management system by local people and the state forest corporation.


Sign in / Sign up

Export Citation Format

Share Document