scholarly journals The effect of land-use change on river watershed quality (case study: Cimahi Watershed, West Java, Indonesia)

2021 ◽  
Vol 933 (1) ◽  
pp. 012010
Author(s):  
S A Nurhayati ◽  
M Marselina ◽  
A Sabar

Abstract Increasing population growth is one of the impacts of the growth of a city or district in an area. This also happened in the Cimahi watershed area. As the population grows, so does the need for land which increases the land-use change in the Cimahi watershed. Land-use changes will affect the surrounding environment and one of them is the river, especially river water quality. As a watershed area, there is one main river that is the source of life as well as the Cimahi watershed, whose main river is the Cimahi River. The purpose of this study was calculated the relationship between land-use change in the Cimahi watershed and the water quality parameters of the Cimahi River. The correlation between the two was calculated using Pearson correlation. Water quality parameters can be seen based on BOD and DO values. BOD and DO values are the opposite because good water quality has high DO values and low BOD values. The correlation between land-use change and BOD was 0.328 is in the area of settlements area. In contrast, to DO values, an increase in settlements/industrial zones will further reduce DO values so that both have a negative correlation, which is indicated by a value of -0,535. The correlation between settlements with pH and temperature values is 0.664 and 0.812. While the correlation between settlements with TSS and TDS values are 0.333 and 0.529, respectively. In this study, it can be seen that there is a relationship between the decline in water quality and changes in land use.

2014 ◽  
Vol 9 (4) ◽  
pp. 526-533
Author(s):  
S. A. Akinseye ◽  
J. T. Harmse

This study focuses on the different physical and chemical water quality parameters of two catchment areas centring on the extent of water pollution in the two basins. Data containing physical and chemical water quality parameters for the Crocodile (West) Catchment area (Gauteng) and the Berg Catchment area (Western Cape) at reconnaissance level of detail were collected from the Department of Water Affairs (DWA) over a period of 5 years, 2007–2011. The relevant data were screened and sorted using the SPSS Software Version 2.0. The data were subjected to ANOVA statistics to search for significant variations in the water quality parameters of concern across the study period in each of the catchment area. The physical and chemical analyses were carried out to determine whether the water quality falls within the total water quality range as prescribed by DWA and WHO for domestic use. Pearson correlation analyses were used to determine the relationship between physical and chemical water quality parameters and the rainfall data over the study period.


2020 ◽  
Vol 95 ◽  
pp. 103766 ◽  
Author(s):  
Mohsen Mirzaei ◽  
Ali Jafari ◽  
Mehdi Gholamalifard ◽  
Hossein Azadi ◽  
Sharif Joorabian Shooshtari ◽  
...  

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Yashon O. Ouma ◽  
Clinton O. Okuku ◽  
Evalyne N. Njau

The process of predicting water quality over a catchment area is complex due to the inherently nonlinear interactions between the water quality parameters and their temporal and spatial variability. The empirical, conceptual, and physical distributed models for the simulation of hydrological interactions may not adequately represent the nonlinear dynamics in the process of water quality prediction, especially in watersheds with scarce water quality monitoring networks. To overcome the lack of data in water quality monitoring and prediction, this paper presents an approach based on the feedforward neural network (FNN) model for the simulation and prediction of dissolved oxygen (DO) in the Nyando River basin in Kenya. To understand the influence of the contributing factors to the DO variations, the model considered the inputs from the available water quality parameters (WQPs) including discharge, electrical conductivity (EC), pH, turbidity, temperature, total phosphates (TPs), and total nitrates (TNs) as the basin land-use and land-cover (LULC) percentages. The performance of the FNN model is compared with the multiple linear regression (MLR) model. For both FNN and MLR models, the use of the eight water quality parameters yielded the best DO prediction results with respective Pearson correlation coefficient R values of 0.8546 and 0.6199. In the model optimization, EC, TP, TN, pH, and temperature were most significant contributing water quality parameters with 85.5% in DO prediction. For both models, LULC gave the best results with successful prediction of DO at nearly 98% degree of accuracy, with the combination of LULC and the water quality parameters presenting the same degree of accuracy for both FNN and MLR models.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1438 ◽  
Author(s):  
Luis Morales-Marín ◽  
Howard Wheater ◽  
Karl-Erich Lindenschmidt

Climate and land-use changes modify the physical functioning of river basins and, in particular, influence the transport of nutrients from land to water. In large-scale basins, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land-use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms one of the largest river systems in western Canada. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality in the basin, in order to describe spatial and temporal patterns and identify those factors and processes that affect water quality. Forty-five climate and land-use change scenarios comprehended by five General Circulation Models (GCMs) and three Representative Concentration Pathways (RCPs) were incorporated into the model to explain how total nitrogen (TN) and total phosphorus (TP) export could vary across the basin in 30, 60 and 90 years from now. According to model results, annual averages of TN and TP export in the SSR are going to increase in the range 0.9–1.28 kg km − 2 year − 1 and 0.12–0.17 kg km − 2 year − 1 , respectively, by the end of the century, due to climate and land-use changes. Higher increases of TP compared to TN are expected since TP and TN are going to increase ∼36% and ∼21%, respectively, by the end of the century. This research will support management plans in order to mitigate nutrient export under future changes of climate and land use.


2020 ◽  
Vol 148 ◽  
pp. 07002
Author(s):  
Siti Ai Nurhayati ◽  
Arwin Sabar ◽  
Mariana Marselina

The development of cities and regencies in the Cimahi watershed area increases the rate of population growth which results in high land requirements in the Cimahi watershed area. Land se change affects the flow of runoff and debit of the Cimahi River. The purpose of this research is to assess the hydrological function area in the Cimahi watershed, the impact of the land use change and to analyze the effect of landuse change in the Cimahi watershed on the extremity of water resources in terms of both quantity and quality. The natural conservation index and the actual conservation index (IKA and IKC) are used as a parameter to indicate the existing hydrological conditions and ideal hydrological conditions for conservation which are calculated based on rainfall, rock type, slope, height and land use. The results of the conservation index showed that there was a decrease in the value of the IKC from 0.637 in 2000 to 0.608 in 2012. The debit extremity could be seen based on the calculations by moving averages on the debit data, and the resulting maximum debit value was greater and the value of the base flow (baseflow) was getting smaller. Land changes in the Cimahi watershed also had an influence on the river water quality.


2021 ◽  
Vol 43 (10) ◽  
pp. 664-678
Author(s):  
Hyeon Woo Go ◽  
Jin Chul Joo ◽  
Dong Hwi Lee ◽  
Chae Min Ahn ◽  
Sun Hwa Choi ◽  
...  

Objectives : In this study, the characteristics of stormwater runoff from agricultural nonpoint pollution sources investigated under various experimental conditions were evaluated among different land use types (e.g., paddy, field, field (alpine), and vinyl house), and event mean concentrations (EMCs) for each water quality parameter were statistically analyzed. These results can be used in calculating the contribution of stormwater runoff to water quality of receiving water body by performing quantitative and qualitative analysis. The unit loads calculated were compared with Ministry of Environment TMDL (2019) to secure the reliability of the calculated unit loads.Methods : EMCs and unit loads investigated in various studies were classified in terms of paddy, field, field (alpine), and vinyl house. Among various land use types, EMCs and unit loads were statistically analyzed quantitatively and qualitatively. For EMCs, a null hypothesis is that ‘EMCs of water quality parameters among different land use types are not different at a statistically significant level (α=0.05)’. Based on the results of statistical analysis, heteroscedasticity (p<0.05) and Welch-test method were consequently applied, and post hoc test was performed using the Games-Howell method. Finally, unit loads was compared and reviewed against the TMDL (2019) unit loads of the Ministry of Environment.Results and Discussion : Various EMCs in all water quality parameters were found among different land use types (i.e., paddy, field, field (alpine) and vinyl house). For most water quality parameters, EMCs tended to decrease in the order of field (alpine) > field > vinyl house > paddy. The coefficient of variance (CV) values of all water q uality parameters were 0.5 or greater. Based on these results, EMCs in agricultural nonpoint source pollution are very diverse and deviated due to the combination of natural and artificial factors. Post hoc test results indicated different statistical significance among all water quality parameters. In addition to the land use types, both natural factors (i.e., season, rainfall, antecedent rainfall day, and, rainfall runoff rate) and artificial factors (i.e., cultivator manipulation, emission route, type of crop, and amount of compost) affect the characteristics of stormwater runoff. In particular, in the case of field (alpine) with prominent topographical feature of slope, and EMCs were statistically greater than those from other land use types in all water quality categories (p<0.05).Conclusions : Countermeasures for field (alpine)with greater EMCs than paddy, field and vinyl house, should be performed priority. EMCs were affected by a complex interaction between natural factors (i.e., season, rainfall, antecedent rainfall day, and, rainfall runoff rate) and artificial factors (i.e., cultivator manipulation, emission route, type of crop, and amount of compost), and additional data and research are required for further study to elucidate these complex interactions.


2013 ◽  
Vol 68 (7) ◽  
pp. 1650-1656 ◽  
Author(s):  
Jing Cheng ◽  
Siping Niu ◽  
Youngchul Kim

Indicator microorganisms – Escherichia coli – in a stormwater wetland controlling non-point source pollution in the Keum River basin was studied and the relationship between water quality parameters and the survival of E. coli was investigated by Pearson correlation analysis based on 16 sets of data collected on dry days. A significant seasonal variation of the density of E. coli was observed in the influent and effluent. A dominant decay of E. coli was found in almost all the wetland components. In the settling pond, the density was observed to vary negatively with pH and the removal of total suspended solids, and the decay was promoted by solar radiation. In the aeration pond, the survival of E. coli was encouraged negatively by the dilution effect, unfavorable increase of dissolved oxygen (DO) and sedimentation with coarse particles. In the marsh wetland, the reduction of E. coli was positively influenced by UV radiation, obvious increase of pH, DO and sedimentation with algae and particles. In the polishing pond, the introduction of E. coli with avian feces and growth of the bacteria were more prevalent than decay. Although this introduction or growth was almost negligible, further study will be conducted in the future.


2018 ◽  
Vol 53 (4) ◽  
pp. 205-218
Author(s):  
Farid Karimipour ◽  
Arash Madadi ◽  
Mohammad Hosein Bashough

Abstract Studies in water quality management have indicated significant relationships between land use/land cover (LULC) variables and water quality parameters. Thus, understanding this linkage is essential in protecting and developing water resources. This article extends the conventional geographical weighted regression (GWR) to a temporal version in order to take both spatial and temporal variations of such linkages into account, which has been ignored by many of the previous efforts. The approach has been evaluated for total nitrates and nitrites' concentration as the case study. For this, observations of 45 water quality sampling stations were examined in a time interval of 20 years (1992–2011), and the linkages between LULC variables and NO2 + NO3 concentration were extracted through Pearson correlation coefficient as a global regression model, the conventional geographic weighted regression, and the proposed spatio-temporal weighted regression (STWR). Comparing the results based on two global criteria of goodness-of-fitness (R2) and residual sum of squares (RSS) verifies that the simultaneous consideration of spatial and temporal variations by STWR substantially improves the results.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Linda R. Staponites ◽  
Vojtěch Barták ◽  
Michal Bílý ◽  
Ondřej P. Simon

Abstract Land use is a predominant threat to the ecological integrity of streams and rivers. Understanding land use-water quality interactions is essential for the development and prioritization of management strategies and, thus, the improvement of water quality. Weighting schemes for land use have recently been employed as methods to advance the predictive power of empirical models, however, their performance has seldom been explored for various water quality parameters. In this work, multiple landscape composition metrics were applied within headwater catchments of Central Europe to investigate how weighting land use with certain combinations of spatial and topographic variables, while implementing alternate distance measures and functions, can influence predictions of water quality. The predictive ability of metrics was evaluated for eleven water quality parameters using linear regression. Results indicate that stream proximity, measured with Euclidean distance, in combination with slope or log-transformed flow accumulation were dominant factors affecting the concentrations of pH, total phosphorus, nitrite and orthophosphate phosphorus, whereas the unweighted land use composition was the most effective predictor of calcium, electrical conductivity, nitrates and total suspended solids. Therefore, both metrics are recommended when examining land use-water quality relationships in small, submontane catchments and should be applied according to individual water quality parameter.


Sign in / Sign up

Export Citation Format

Share Document