Non-Fourier Thermal Fracture Analysis of a Griffith Interface Crack in Orthotropic Functionally Graded Coating/Substrate Structure

Author(s):  
Wenzhi Yang ◽  
Amin Pourasghar ◽  
Zengtao Chen
2012 ◽  
Vol 602-604 ◽  
pp. 1596-1599
Author(s):  
Bo He ◽  
Chang Qing Sun

It is assumed that the physical parameters of functionally graded coating material accords with the variation of degree n polynomial, and based on this material model, the behavior of crack fracture on the interface of functionally graded coating is studied. The results show that when the functionally graded coating structure bears a tension load, stress intensity factors of mode I and mode II exist at the same time generally, and the intensity factor of mode I occupies a leading position all along. Besides, when the elastic modulus ratio of the base to the functionally graded coating top is 5 and the elastic modulus of functionally graded coating varies linearly, the stress intensity factor of interface crack is the smallest, and with the increasing of elastic modulus ratio, the optimal non-uniform parameter tends to be larger than 1.


Sign in / Sign up

Export Citation Format

Share Document