Upper Extremity Training with Rehabilitation Technology: A Qualitative Exploration of Individuals With Spinal Cord Injury

2021 ◽  
Vol 102 (10) ◽  
pp. e51
Author(s):  
Alison Bell ◽  
Namrata Grampurohit ◽  
Ralph Marino
2021 ◽  
pp. 1-7
Author(s):  
Allan D. Levi ◽  
Jan M. Schwab

The corticospinal tract (CST) is the preeminent voluntary motor pathway that controls human movements. Consequently, long-standing interest has focused on CST location and function in order to understand both loss and recovery of neurological function after incomplete cervical spinal cord injury, such as traumatic central cord syndrome. The hallmark clinical finding is paresis of the hands and upper-extremity function with retention of lower-extremity movements, which has been attributed to injury and the sparing of specific CST fibers. In contrast to historical concepts that proposed somatotopic (laminar) CST organization, the current narrative summarizes the accumulated evidence that 1) there is no somatotopic organization of the corticospinal tract within the spinal cord in humans and 2) the CST is critically important for hand function. The evidence includes data from 1) tract-tracing studies of the central nervous system and in vivo MRI studies of both humans and nonhuman primates, 2) selective ablative studies of the CST in primates, 3) evolutionary assessments of the CST in mammals, and 4) neuropathological examinations of patients after incomplete cervical spinal cord injury involving the CST and prominent arm and hand dysfunction. Acute traumatic central cord syndrome is characterized by prominent upper-extremity dysfunction, which has been falsely predicated on pinpoint injury to an assumed CST layer that specifically innervates the hand muscles. Given the evidence surveyed herein, the pathophysiological mechanism is most likely related to diffuse injury to the CST that plays a critically important role in hand function.


2018 ◽  
pp. 809-836 ◽  
Author(s):  
Rüdiger Rupp ◽  
Martin Rohm ◽  
Matthias Schneiders

For individuals with tetraplegia, restoring limited or missing grasping function is the highest priority. In patients with high Spinal Cord Injury (SCI) and a lack of surgical options, restricted upper extremity function can be improved with the use of neuroprostheses based on Functional Electrical Stimulation (FES). Grasp neuroprostheses with different degrees of complexity and invasiveness exist, although few models are available for routine clinical application. Hybrid systems combining FES with orthoses hold promise for restoring completely lost upper extremity function. Novel user interfaces integrating biosignals from several sources are needed to make full use of the many degrees of freedom of hybrid neuroprostheses. Motor Imagery (MI)-based Brain-Computer Interfaces (BCIs) are an emerging technology that may serve as a valuable adjunct to traditional control interfaces. This chapter provides an overview of the current state of the art of BCI-controlled upper-extremity neuroprostheses and describes the challenges and promises for the future.


Sign in / Sign up

Export Citation Format

Share Document