pten inhibition
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 13)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 22 (19) ◽  
pp. 10209
Author(s):  
Thinh-Thi Nguyen ◽  
Thuan-Trong Ung ◽  
Shinan Li ◽  
Dhiraj Kumar Sah ◽  
Sun-Young Park ◽  
...  

Micro-RNA-21 (miR-21) is a vital regulator of colorectal cancer (CRC) progression and has emerged as a potential therapeutic target in CRC treatment. Our study using real-time PCR assay found that a secondary bile acid, lithocholic acid (LCA), stimulated the expression of miR21 in the CRC cell lines. Promoter activity assay showed that LCA strongly stimulated miR21 promoter activity in HCT116 cells in a time- and dose-dependent manner. Studies of chemical inhibitors and miR21 promoter mutants indicated that Erk1/2 signaling, AP-1 transcription factor, and STAT3 are major signals involved in the mechanism of LCA-induced miR21 in HCT116 cells. The elevation of miR21 expression was upstream of the phosphatase and tensin homolog (PTEN) inhibition, and CRC cell proliferation enhancement that was shown to be possibly mediated by PI3K/AKT signaling activation. This study is the first to report that LCA affects miR21 expression in CRC cells, providing us with a better understanding of the cancer-promoting mechanism of bile acids that have been described as the very first promoters of CRC progression.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Yifei Qin ◽  
Qiang Zuo ◽  
Lei Huang ◽  
Liping Huang ◽  
Glenn Merlino ◽  
...  

AbstractTargeting mutant BRAF in patients with melanomas harboring this oncogene has been highly successful as a first-line treatment, but other mutations may affect its efficacy and alter the route of acquired resistance resulting in recurrence and poor prognosis. As an evolving strategy, melanoma treatment needs to be expanded to include targets based on newly discovered emerging molecules and pathways. We here show that PERK plays a critical role in BRAF inhibitor-acquired resistance in melanoma with impaired PTEN. Inhibition of PERK by either shRNA or a pharmacological inhibitor blocked the growth of BRAF inhibitor-resistant melanoma with impaired PTEN in vitro and in vivo, suggesting an effective approach against melanomas with mutant BRAF and PTEN deficiency. Our current findings, along with our previous discovery that the AXL/AKT axis mediates resistance to BRAF inhibition in melanoma with wild-type PTEN, provide new insights toward a strategy for combating BRAF inhibition-acquired resistance in BRAF mutant melanoma with different PTEN statuses.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bin Wang ◽  
Peiyan Hua ◽  
Ruimin Wang ◽  
Jindong Li ◽  
Guangxin Zhang ◽  
...  

Abstract Objective Esophageal squamous cell carcinoma (ESCC) is featured by early metastasis and late diagnosis. MicroRNA-301 (miR-301) is known to participate in diverse cancers. Nevertheless, effects of miR-301 on ESCC remain unexplored. Thus, we aim to explore the role of miR-301 in ESCC progression. Methods Expression of miR-301 and phosphatase and tensin homologue (PTEN) in ESCC tissues and cell lines was assessed. Next, the screened cells were treated with altered miR-301 or PTEN oligonucleotide and plasmid, and then, the colony formation ability, cell viability, migration, invasion, cell cycle distribution and apoptosis of ESCC cells were assessed. Moreover, tumor growth and microvessel density (MVD) were also assessed, and the targeting relationship between miR-301 and PTEN was affirmed. Results MiR-301 was upregulated, and PTEN was downregulated in ESCC tissues and cells. KYSE30 cells and Eca109 cells were selected for functional assays. In KYSE30 cells, inhibited miR-301 or overexpressed PTEN suppressed cell malignant behaviors, and silenced PTEN eliminated the impact of miR-301 inhibition on ESCC progression. In Eca109 cells, miR-301 overexpression or PTEN inhibition promoted cell malignant behaviors, and PTEN overexpression reversed the effects of miR-301 elevation on ESCC progression. The in vivo assay revealed that miR-301 inhibition or PTEN overexpression repressed ESCC tumor growth and MVD, and miR-301 elevation or PTEN reduction had contrary effects. Moreover, PTEN was targeted by miR-301. Conclusion Taken together, results in our study revealed that miR-301 affected cell growth, metastasis and angiogenesis via regulating PTEN expression in ESCC.


2020 ◽  
Author(s):  
Feng Yue ◽  
Changyou Song ◽  
Di Huang ◽  
Naagarajan Narayanan ◽  
Jiamin Qiu ◽  
...  

AbstractDuchenne Muscular Dystrophy (DMD) is caused by mutation of the muscle membrane protein dystrophin and characterized by severe degeneration of myofibers, progressive muscle wasting and loss of mobility, ultimately cardiorespiratory failure and premature death. Here we report that skeletal muscle-specific knockout (KO) of Phosphatase and tensin homolog (Pten) gene in an animal model of DMD (mdx mice) alleviates myofiber degeneration and restores muscle function without increasing tumor incidences. Specifically, Pten KO normalizes myofiber size and prevents muscular atrophy, and improves grip strength and exercise performance of mdx mice. Pten KO also reduces fibrosis and inflammation; and ameliorates muscle pathology in mdx mice. Moreover, we found that Pten KO upregulates extracellular matrix and basement membrane components positively correlated to wound healing, but suppresses negative regulators of wound healing and lipid biosynthesis; and restores the integrity of muscle basement membrane in mdx mice. Importantly, pharmacological inhibition of PTEN similarly ameliorates muscle pathology and improves muscle integrity and function in mdx mice. Our finding provides evidence that PTEN inhibition may represent a potential therapeutic strategy to restore muscle function in DMD.


2020 ◽  
Author(s):  
Laura D’Andrea ◽  
Christina M. Lucato ◽  
Elsa A. Marquez ◽  
Yong-Gang Chang ◽  
Srgjan Civciristov ◽  
...  

ABSTRACTThe PTEN:P-Rex2 complex is one of the most commonly mutated signaling nodes in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cell proliferation. Here, using extensive crosslinking mass spectrometry and functional studies, we provide crucial mechanistic insights into PTEN:P-Rex2 complex assembly and co-inhibition. PTEN is anchored to P-Rex2 by interactions between the PTEN PDZ-BM tail and the second PDZ domain of P-Rex2. This interaction bridges PTEN across the P-Rex2 surface, occluding PTEN membrane-binding and PI(3,4,5)P3 hydrolysis. Conversely, PTEN both allosterically promotes an autoinhibited P-Rex2 conformation and occludes Gβγ binding and GPCR activation. These insights allow us to define a new gain-of-function class of cancer mutations within the PTEN:P-Rex2 interface that uncouples PTEN inhibition of Rac1 signaling. These findings provide a mechanistic framework to understand the dysregulation of the PTEN:P-Rex2 signaling node in metastatic cancer.


2020 ◽  
Vol 15 (2) ◽  
pp. 1329-1344
Author(s):  
Gabriel A Borges ◽  
Liana P Webber ◽  
Ana Elizia M Marques ◽  
Eliete NS Guerra ◽  
Rogerio M Castilho ◽  
...  

Although the human body can heal, it takes time, and slow healing and chronic wounds often occur. Thus, identifying novel therapies to aid regeneration is needed. Here, we conducted a systematic review following the Preferred Reporting Items for Systematic Reviews guidelines and assessed preclinical studies on phosphatase and tensin homolog (PTEN) inhibitors and their effects on tissue repair and regeneration. In conditions associated with neurodegeneration, tissue injury and ischemia, the PTEN-regulated PI3K/AKT signaling pathway is activated. The use of PTEN inhibitors resulted in better tissue response by reducing the healing time and lesion sizes or inducing neuronal regeneration. Notably, all studies included in this systematic review indicated that pharmacological inhibition of PTEN enhanced the repair process of the eye, lung, muscle and nervous system.


Sign in / Sign up

Export Citation Format

Share Document