A general framework for the numerical analysis of high-order finite difference solvers for nonlinear multi-term time-space fractional partial differential equations with time delay

Author(s):  
Ahmed S. Hendy ◽  
Mahmoud A. Zaky ◽  
Rob H. De Staelen
2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Weishi Yin ◽  
Fei Xu ◽  
Weipeng Zhang ◽  
Yixian Gao

This paper is devoted to finding the asymptotic expansion of solutions to fractional partial differential equations with initial conditions. A new method, the residual power series method, is proposed for time-space fractional partial differential equations, where the fractional integral and derivative are described in the sense of Riemann-Liouville integral and Caputo derivative. We apply the method to the linear and nonlinear time-space fractional Kuramoto-Sivashinsky equation with initial value and obtain asymptotic expansion of the solutions, which demonstrates the accuracy and efficiency of the method.


2014 ◽  
Vol 598 ◽  
pp. 409-413 ◽  
Author(s):  
Zakieh Avazzadeh ◽  
Wen Chen ◽  
Vahid Reza Hosseini

In this work, we describe the radial basis functions for solving the time fractional partial differential equations defined by Caputo sense. These problems can be discretized in the time direction based on finite difference scheme and is continuously approximated by using the radial basis functions in the space direction which achieves the semi-discrete solution. Numerical results accuracy the efficiency of the presented method.


Sign in / Sign up

Export Citation Format

Share Document