residual power series
Recently Published Documents





Frede Nidal Anakira ◽  
Ali Jameel ◽  
Mohmmad Hijazi ◽  
Abdel-Kareem Alomari ◽  
Noraziah Man

<p>In this paper, a modified procedure based on the residual power series method (RPSM) was implemented to achieve approximate solution with high degree of accuracy for a system of multi-pantograph type delay differential equations (DDEs). This modified procedure is considered as a hybrid technique used to improve the curacy of the standard RPSM by combining the RPSM, Laplace transform and Pade approximant to be a powerful technique that can be solve the problems directly without large computational work, also even enlarge domain and leads to very accurate solutions or gives the exact solutions which is consider the best advantage of this technique. Some numerical applications are illustrated and numerical results are provided to prove the validity and the ability of this technique for this type of important differential equation that appears in different applications in engineering and control system.</p>

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Mine Aylin Bayrak ◽  
Ali Demir ◽  
Ebru Ozbilge

The task of present research is to establish an enhanced version of residual power series (RPS) technique for the approximate solutions of linear and nonlinear space-time fractional problems with Dirichlet boundary conditions by introducing new parameter λ . The parameter λ allows us to establish the best numerical solutions for space-time fractional differential equations (STFDE). Since each problem has different Dirichlet boundary conditions, the best choice of the parameter λ depends on the problem. This is the major contribution of this research. The illustrated examples also show that the best approximate solutions of various problems are constructed for distinct values of parameter λ . Moreover, the efficiency and reliability of this technique are verified by the numerical examples.

Symmetry ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 50
Aliaa Burqan ◽  
Rania Saadeh ◽  
Ahmad Qazza

In this article, a new, attractive method is used to solve fractional neutral pantograph equations (FNPEs). The proposed method, the ARA-Residual Power Series Method (ARA-RPSM), is a combination of the ARA transform and the residual power series method and is implemented to construct series solutions for dispersive fractional differential equations. The convergence analysis of the new method is proven and shown theoretically. To validate the simplicity and applicability of this method, we introduce some examples. For measuring the accuracy of the method, we make a comparison with other methods, such as the Runge–Kutta, Chebyshev polynomial, and variational iterative methods. Finally, the numerical results are demonstrated graphically.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Adnan Khan ◽  
Muhammad Imran Liaqat ◽  
Muhammad Younis ◽  
Ashraful Alam

In this paper, we present a simple and efficient novel semianalytic method to acquire approximate and exact solutions for the fractional order Cauchy reaction-diffusion equations (CRDEs). The fractional order derivative operator is measured in the Caputo sense. This novel method is based on the combinations of Elzaki transform method (ETM) and residual power series method (RPSM). The proposed method is called Elzaki residual power series method (ERPSM). The proposed method is based on the new form of fractional Taylor’s series, which constructs solution in the form of a convergent series. As in the RPSM, during establishing the coefficients for a series, it is required to compute the fractional derivatives every time. While ERPSM only requires the concept of the limit at zero in establishing the coefficients for the series, consequently scarce calculations give us the coefficients. The recommended method resolves nonlinear problems deprived of utilizing Adomian polynomials or He’s polynomials which is the advantage of this method over Adomain decomposition method (ADM) and homotopy-perturbation method (HTM). To study the effectiveness and reliability of ERPSM for partial differential equations (PDEs), absolute errors of three problems are inspected. In addition, numerical and graphical consequences are also recognized at diverse values of fractional order derivatives. Outcomes demonstrate that our novel method is simple, precise, applicable, and effectual.

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1646
Malik Bataineh ◽  
Mohammad Alaroud ◽  
Shrideh Al-Omari ◽  
Praveen Agarwal

Fuzzy differential equations provide a crucial tool for modeling numerous phenomena and uncertainties that potentially arise in various applications across physics, applied sciences and engineering. Reliable and effective analytical methods are necessary to obtain the required solutions, as it is very difficult to obtain accurate solutions for certain fuzzy differential equations. In this paper, certain fuzzy approximate solutions are constructed and analyzed by means of a residual power series (RPS) technique involving some class of fuzzy fractional differential equations. The considered methodology for finding the fuzzy solutions relies on converting the target equations into two fractional crisp systems in terms of ρ-cut representations. The residual power series therefore gives solutions for the converted systems by combining fractional residual functions and fractional Taylor expansions to obtain values of the coefficients of the fractional power series. To validate the efficiency and the applicability of our proposed approach we derive solutions of the fuzzy fractional initial value problem by testing two attractive applications. The compatibility of the behavior of the solutions is determined via some graphical and numerical analysis of the proposed results. Moreover, the comparative results point out that the proposed method is more accurate compared to the other existing methods. Finally, the results attained in this article emphasize that the residual power series technique is easy, efficient, and fast for predicting solutions of the uncertain models arising in real physical phenomena.

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2868
Hussam Aljarrah ◽  
Mohammad Alaroud ◽  
Anuar Ishak ◽  
Maslina Darus

In this article, an attractive numeric–analytic algorithm, called the fractional residual power series algorithm, is implemented for predicting the approximate solutions for a certain class of fractional systems of partial differential equations in terms of Caputo fractional differentiability. The solution methodology combines the residual function and the fractional Taylor’s formula. In this context, the proposed algorithm provides the unknown coefficients of the expansion series for the governed system by a straightforward pattern as well as it presents the solutions in a systematic manner without including any restrictive conditions. To enhance the theoretical framework, some numerical examples are tested and discussed to detect the simplicity, performance, and applicability of the proposed algorithm. Numerical simulations and graphical plots are provided to check the impact of the fractional order on the geometric behavior of the fractional residual power series solutions. Moreover, the efficiency of this algorithm is discussed by comparing the obtained results with other existing methods such as Laplace Adomian decomposition and Iterative methods. Simulation of the results shows that the fractional residual power series technique is an accurate and very attractive tool to obtain the solutions for nonlinear fractional partial differential equations that occur in applied mathematics, physics, and engineering.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Mohammad Alaroud ◽  
Nedal Tahat ◽  
Shrideh Al-Omari ◽  
D. L. Suthar ◽  
Selma Gulyaz-Ozyurt

Many phenomena in physics and engineering can be built by linear and nonlinear fractional partial differential equations which are considered an accurate instrument to interpret these phenomena. In the current manuscript, the approximate analytical solutions for linear and nonlinear time-fractional Swift-Hohenberg equations are created and studied by means of a recent superb technique, named the Laplace residual power series (LRPS) technique under the time-Caputo fractional derivatives. The proposed technique is a combination of the generalized Taylor’s formula and the Laplace transform operator, which depends mainly on the concept of limit at infinity to find the unknown functions for the fractional series expansions in the Laplace space with fewer computations and more accuracy comparing with the classical RPS that depends on the Caputo fractional derivative for each step in obtaining the coefficient expansion. To test the simplicity, performance, and applicability of the present method, three numerical problems of the time-fractional Swift-Hohenberg initial value problems are considered. The impact of the fractional order β on the behavior of the approximate solutions at fixed bifurcation parameter is shown graphically and numerically. Obtained results emphasized that the LRPS technique is an easy, efficient, and speed approach for the exact description of the linear and nonlinear time-fractional models that arise in natural sciences.

2021 ◽  
Vol 20 ◽  
pp. 524-539
Mohammad Alaroud ◽  
Yousef Al-Qudah

The purpose of this work is to provide and analyzed the approximate analytical solutions for certain systems of fractional initial value problems (FIVPs) under the time-Caputo fractional derivatives by means of a novel attractive algorithm, called the Laplace residual power series (LRPS) algorithm. It combines the Laplace transform operator and the RPS algorithm. The proposed algorithm produces the fractional series solutions in the Laplace space based upon basically on the limit concept and then transforming bake them to original spaces to get a rapidly convergent series approximate solution. To validate the efficiency, accuracy, and applicability of the proposed algorithm, two illustrative examples are performed. Obtained solutions are simulated graphically and numerically. The analysis of results reached shows that the proposed algorithm is applicable, effective, and very fast in determining the solutions for many fractional problems arising in the various areas of applied mathematics

Fractals ◽  
2021 ◽  

Fractional differential and integral equations are focus of the researchers owing to their tremendous applications in different field of science and technology, such as physics, chemistry, mathematical biology, dynamical system and engineering. In this work, a power series approach called Residual Power Series Method (RPSM) is applied for the solution of fractional (non-integer) order integro-differential equations (FIDEs). The Caputo sense is used for calculating fractional derivatives. Comparison of the obtained solution is made with the Trigonometric Transform Method (TTM) and Optimal Homotopy Asymptotic Method (OHAM). There is no restrictive condition on the proposed solution. The presented technique is simple in applicability and easily computable.

Sign in / Sign up

Export Citation Format

Share Document