A novel approach of superconvergence analysis of the bilinear-constant scheme for time-dependent Stokes equations

2022 ◽  
Vol 173 ◽  
pp. 180-192
Author(s):  
Huaijun Yang
Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


2017 ◽  
Vol 27 (9) ◽  
pp. 2105-2114
Author(s):  
Xiaoying Zhao ◽  
Yanren Hou ◽  
Guangzhi Du

Purpose The purpose of this paper is to propose a parallel partition of unity method to solve the time-dependent Stokes problems. Design/methodology/approach This paper solved the time-dependent Stokes equations using the finite element method and the partition of unity method. Findings The proposed method in this paper obtained the same accuracy as the standard Galerkin method, but it, in general, saves time. Originality/value Based on a combination of the partition of unity method and the finite element method, the authors, in this paper, propose a new parallel partition of unity method to solve the unsteady Stokes equations. The idea is that, at each time step, one need to only solve a series of independent local sub-problems in parallel instead of one global problem. Numerical tests show that the proposed method not only reaches the same convergence orders as the fully discrete standard Galerkin method but also saves ample computing time.


1991 ◽  
Vol 227 ◽  
pp. 1-33 ◽  
Author(s):  
Stephen M. Cox

We consider the flow of a viscous incompressible fluid in a parallel-walled channel, driven by steady uniform suction through the porous channel walls. A similarity transformation reduces the Navier-Stokes equations to a single partial differential equation (PDE) for the stream function, with two-point boundary conditions. We discuss the bifurcations of the steady solutions first, and show how a pitchfork bifurcation is unfolded when a symmetry of the problem is broken.Then we describe time-dependent solutions of the governing PDE, which we calculate numerically. We analyse these unsteady solutions when there is a high rate of suction through one wall, and the other wall is impermeable: there is a limit cycle composed of an explosive phase of inviscid growth, and a slow viscous decay. The inviscid phase ‘almost’ has a finite-time singularity. We discuss whether solutions of the governing PDE, which are exact solutions of the Navier-Stokes equations, may develop mathematical singularities in a finite time.When the rates of suction at the two walls are equal so that the problem is symmetrical, there is an abrupt transition to chaos, a ‘homoclinic explosion’, in the time-dependent solutions as the Reynolds number is increased. We unfold this transition by perturbing the symmetry, and compare direct numerical integrations of the governing PDE with a recent theory for ‘Lorenz-like’ dynamical systems. The chaos is found to be very sensitive to symmetry breaking.


Sign in / Sign up

Export Citation Format

Share Document