Prescribed performance dynamic surface control for trajectory-tracking of unmanned surface vessel with input saturation

2021 ◽  
Vol 113 ◽  
pp. 102736
Author(s):  
Zhipeng Shen ◽  
Qun Wang ◽  
Sheng Dong ◽  
Haomiao Yu
2018 ◽  
Vol 41 (4) ◽  
pp. 975-989 ◽  
Author(s):  
Ziquan Yu ◽  
Youmin Zhang ◽  
Yaohong Qu

In this paper, a prescribed performance-based distributed neural adaptive fault-tolerant cooperative control (FTCC) scheme is proposed for multiple unmanned aerial vehicles (multi-UAVs). A distributed sliding-mode observer (SMO) technique is first utilized to estimate the leader UAV’s reference. Then, by transforming the tracking errors of follower UAVs with respect to the estimated references into a new set, a distributed neural adaptive FTCC protocol is developed based on the combination of dynamic surface control (DSC) and minimal learning parameters of neural network (MLPNN). Moreover, auxiliary dynamic systems are exploited to deal with input saturation. Furthermore, the proposed control scheme can guarantee that all signals of the closed-loop system are bounded, and tracking errors of follower UAVs with respect to the estimated references are confined within the prescribed bounds. Finally, comparative simulation results are presented to illustrate the effectiveness of the proposed distributed neural adaptive FTCC scheme.


2021 ◽  
Author(s):  
Yimin Zhou ◽  
Zengwu Tian

Abstract In this paper, the flight control of the Unmanned aerial vehicle (UAV) is discussed with the proposed adaptive dynamic surface control method owing to its underactuated and non-linear characteristics. The proposed control algorithm is based on radial basis function (RBF) neural network and anti-saturation auxiliary system to realize high-precision trajectory tracking under time-varying disturbances and input saturation. First, the nonlinear dynamic model of the UAV with disturbances is established with the aid of rigid body motion theory. With the adoption of the dynamic surface control algorithm, the error surface and the Lyapunov function are defined to design the preliminary control law of the designed controller. Then the RBF neural network is introduced to estimate and compensate the disturbance. Further, an anti - saturation module is designed to tackle the problem of input saturation. By using the Lyapunov stability theory, it is proved that the stability and signal consistency of the closed-loop system are bounded, along with the constrained conditions of the control parameters. Simulation experiments have been performed and the results demonstrate that the proposed control algorithm has high-precision trajectory tracking ability and strong anti-disturbance capability under the input saturation constraint with high control performance.


2019 ◽  
Vol 369 ◽  
pp. 166-175 ◽  
Author(s):  
Huijuan Luo ◽  
Jinpeng Yu ◽  
Chong Lin ◽  
Zhanjie Liu ◽  
Lin Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document