A path planning strategy unified with a COLREGS collision avoidance function based on deep reinforcement learning and artificial potential field

2021 ◽  
Vol 113 ◽  
pp. 102759
Author(s):  
Lingyu Li ◽  
Defeng Wu ◽  
Youqiang Huang ◽  
Zhi-Ming Yuan
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 135513-135523
Author(s):  
Qingfeng Yao ◽  
Zeyu Zheng ◽  
Liang Qi ◽  
Haitao Yuan ◽  
Xiwang Guo ◽  
...  

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zheng Fang ◽  
Xifeng Liang

Purpose The results of obstacle avoidance path planning for the manipulator using artificial potential field (APF) method contain a large number of path nodes, which reduce the efficiency of manipulators. This paper aims to propose a new intelligent obstacle avoidance path planning method for picking robot to improve the efficiency of manipulators. Design/methodology/approach To improve the efficiency of the robot, this paper proposes a new intelligent obstacle avoidance path planning method for picking robot. In this method, we present a snake-tongue algorithm based on slope-type potential field and combine the snake-tongue algorithm with genetic algorithm (GA) and reinforcement learning (RL) to reduce the path length and the number of path nodes in the path planning results. Findings Simulation experiments were conducted with tomato string picking manipulator. The results showed that the path length is reduced from 4.1 to 2.979 m, the number of nodes is reduced from 31 to 3 and the working time of the robot is reduced from 87.35 to 37.12 s, after APF method combined with GA and RL. Originality/value This paper proposes a new improved method of APF, and combines it with GA and RL. The experimental results show that the new intelligent obstacle avoidance path planning method proposed in this paper is beneficial to improve the efficiency of the robotic arm. Graphical abstract Figure 1 According to principles of bionics, we propose a new path search method, snake-tongue algorithm, based on a slope-type potential field. At the same time, we use genetic algorithm to strengthen the ability of the artificial potential field method for path searching, so that it can complete the path searching in a variety of complex obstacle distribution situations with shorter path searching results. Reinforcement learning is used to reduce the number of path nodes, which is good for improving the efficiency of robot work. The use of genetic algorithm and reinforcement learning lays the foundation for intelligent control.


Author(s):  
Zhao Xu ◽  
Jinwen Hu ◽  
Yunhong Ma ◽  
Man Wang ◽  
Chunhui Zhao

The unmanned aerial vehicle (UAV) has been a research hotspot worldwide. The UAV system is developing to be more and more intelligent and autonomous. UAV path planning is an important part of UAV autonomous control and the important guarantee of UAV's safety. For the purpose of improving the collision avoidance and path planning algorithms, the artificial potential field, fuzzy logic algorithm and ant colony algorithm are simulated respectively in the static obstacle and dynamic obstacle environments, and compared based on the minimum avoidance distance and range ratio. Meanwhile, an improved algorithm of artificial potential field is proposed, and the improvement helps the UAV escape the local minimum by introducing the vertical guidance repulsion. The simulation results are rigorous and reliable, which lay a foundation for the further fusion of multiple algorithms and improving the path planning algorithms.


2020 ◽  
Vol 14 (10) ◽  
pp. 1200-1209
Author(s):  
Nurbaiti Wahid ◽  
Hairi Zamzuri ◽  
Noor H. Amer ◽  
Abdurahman Dwijotomo ◽  
Sarah Atifah Saruchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document