Single phase flow characteristics in the headers and connecting tube of parallel tube platen systems

2006 ◽  
Vol 26 (4) ◽  
pp. 396-402 ◽  
Author(s):  
Zhengqing Miao ◽  
Tongmo Xu
2020 ◽  
Vol 52 (4) ◽  
pp. 045505
Author(s):  
Pengxin Cheng ◽  
Nan Gui ◽  
Xingtuan Yang ◽  
Jiyuan Tu ◽  
Shengyao Jiang ◽  
...  

Author(s):  
Sira Saisorn ◽  
Somchai Wongwises ◽  
Piyawat Kuaseng ◽  
Chompunut Nuibutr ◽  
Wattana Chanphan

The investigations of heat transfer and fluid flow characteristics of non-boiling air-water flow in micro-channels are experimentally studied. The gas-liquid mixture from y-shape mixer is forced to flow in the 21 parallel rectangular microchannels with 40 mm long in the flow direction. Each channel has a width and a depth of 0.45 and 0.41 mm, respectively. Flow visualization is feasible by incorporating the stereozoom microscope into the camera system and different flow patterns are recorded. The experiments are performed under low superficial velocities. Two-phase heat transfer gives better results when compared with the single-phase flow. It is found from the experiment that heat transfer enhancement up to 53% is obtained over the single-phase flow. Also, the change in the configuration of the inlet plenum can result in the different two-phase flow mechanisms.


2021 ◽  
Vol 25 (6) ◽  
pp. 74-81
Author(s):  
R. Shakir ◽  

The cooling equipment project must use electrical and electronic equipment because of the need to remove the heat generated by this equipment. Investigation; R-113 single-phase flow heat transfer; (50 x 50 mm2) cross-section and (5 mm) height; used in a series of stagger-square micro-pin fins. Inlet temperature of (25 °C); (6) Mass flow rate at this temperature, the recommended range is (0. 0025 -0.01 kg/sec) the inlet and outlet pressures are approximately (1-1.10 bar), and through (25- 225 watts) applied heat. The iterative process is used to obtain the heat flow characteristics, for example; the single-phase heat transfer coefficient is completely laminar flow developing, in this flow, guesses the wall temperature, guess the fluid temperature. The possible mechanism of heat transfer has been discussed


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Jingzhi Zhang ◽  
Wei Li

Heat transfer and flow characteristics of Taylor flows in vertical capillaries with tube diameters ranging from 0.5 mm to 2 mm were studied numerically with the volume of fluid (VOF) method. Streamlines, bubble shapes, pressure drops, and heat transfer characteristics of the fully developed gas–liquid Taylor flow were investigated in detail. The numerical data fitted well with experimental results and with the predicted values of empirical correlations. The results indicate that the dimensionless liquid film thickness and bubble rising velocity increase with increasing capillary number. Pressure drops in liquid slug region are higher than the single-phase flow because of the Laplace pressure drop. The flow pattern dependent model and modified flow separation model which takes Bond number and Reynolds number into account can predict the numerical pressure drops well. Compared with the single-phase flow, less time is needed for the Taylor flow to reach a thermal fully developed status. The Nusselt number of Taylor flow is about 1.16–3.5 times of the fully developed single-phase flow with a constant wall heat flux. The recirculation regions in the liquid and gas slugs can enhance the heat transfer coefficient and accelerate the development of the thermal boundary layer.


Author(s):  
Nan Zhang ◽  
Zhongning Sun ◽  
Ming Ding

A computational fluid dynamic (CFD) model for single phase flow in the three dimensional randomly packed bed with spherical particles has been developed and validated with experimental results. The flow characteristics within this complex geometry are very complicated. In order to obtain insight into the interior and local flow characteristics, Three-dimensional simulation is required. First, we constructed the randomly packed bed with spherical particle, using Discrete Element Method (DEM) based on the integration of Newton’s laws of motion. To validate the DEM simulations the global bed porosity and the radial porosity distribution were compared with empirical correlation from literature. Second, the complex geometrical properties of random packed bed make it difficult to produce a fine mesh. Herein, the bridge method for meshing the particle-particle and particle-wall contact points in the packed bed was applied. The contact zones are modified and then partitioned into several regular parts, so the structure gird was meshed. Finally, the simulation of water flow in the randomly packed bed with a tube-to-particle diameter ratio of 6.325 has been carried out by the commercial CFD code. A comparison with previously published correlations and experimental data shows that the relationship proposed by KTA agree well with the measured pressure drop. Furthermore the results of simulation for distribution of velocity in the bed were analyzed and discussed.


2008 ◽  
Vol 2 (4) ◽  
pp. 466-470 ◽  
Author(s):  
Heyi Zeng ◽  
Suizheng Qiu ◽  
Guanghui Su ◽  
Dounan Jia

Sign in / Sign up

Export Citation Format

Share Document