parallel tube
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 14)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 39 ◽  
pp. 69-74
Author(s):  
Xiaojun Zhou ◽  
Si Qin ◽  
Dongdi Liu ◽  
Kangjia Du

2021 ◽  
Vol 2048 (1) ◽  
pp. 012032
Author(s):  
Weikai Gao ◽  
Xiaoyang Xie ◽  
Xiaowei Li ◽  
Xinxin Wu

Abstract Helical tube bundles were usually adopted in the steam generators (SGs) or intermediate heat exchangers (IHXs) of high temperature gas-cooled reactors (HTGRs). Heat transfer tubes in neighboring tube layers can be coiled in the same direction or in the opposite direction. The coiling direction has influences on the thermal-hydraulic performances of the SGs or IHXs. The cross flow convection over helical tube bundles with neighboring tube layers having the same coiled direction and opposite coiled direction were numerically investigated. Reynolds stress model with standard wall functions was used for the turbulence modeling. For a helical tube bundle with neighboring layers coiled in the same direction (parallel tube layers), the tangential velocity along the coiled circumferential direction could be observed obviously. For a helical tube bundle with neighboring layers coiled in the opposite direction (crossed tube layers), there is no average tangential velocity of the whole flow filed. And the streamlines of the fluid are very complex. The flow resistances and heat transfer coefficients over helical tube bundle with parallel tube layers and crossed tube layers were compared. Although the heat transfer over helical tube bundles with crossed tube layers was 9.39% smaller than that with parallel tube layers, the pressure drop over tube bundle with crossed tube layers was much smaller compared with those with parallel tube layers.


2021 ◽  
Vol 11 (11) ◽  
pp. 4950
Author(s):  
Sebastian Bürklein ◽  
Paul Maßmann ◽  
David Donnermeyer ◽  
Karsten Tegtmeyer ◽  
Edgar Schäfer

The aim was to evaluate the influence of artificial canal size on the results of cyclic fatigue tests for endodontic instruments. Dynamic cyclic fatigue at body temperature using continuous tapered nickel–titanium F6-SkyTaper instruments (Komet, Lemgo, Germany), size 25/.06 with an amplitude of 3 mm, was tested in four different simulated root canals: (A) size of the instrument +0.02 mm (within the tolerances of the instruments); (B) +0.05 mm; (C) +0.10 mm; (D) parallel tube with 1.25 mm in diameter. The artificial canals (angle of curvature 60°, radius 5.0 mm, center of curvature 5.0 mm) were produced by a LASER-melting technique. Time and cycles to fracture, and lengths of the fractured instruments were recorded and statistically analyzed (Student–Newman–Keuls; Kruskal–Wallis test). Time to fracture significantly increased with increasing size of the artificial canals in the following order: A < B, C < D (p < 0.05). Length of separated instruments continuously decreased with increasing canal sizes. The parallel tube produced the significantly shortest fragments (p < 0.05). Within the limitations of this study, dynamic cyclic fatigue of endodontic instruments depends on the congruency of the instruments’ dimensions with that of the artificial canals. In future cyclic fatigue testing, due to the closer match of canal and instrument parameters, it is necessary to adjust the artificial canal sizes to the size of the instruments within the manufacturing tolerances of the instruments.


2020 ◽  
pp. 136943322096527
Author(s):  
Longji Dang ◽  
Rui Pang ◽  
Rui Liu ◽  
Hongmei Ni ◽  
Shuting Liang

This paper aims to investigate the seismic performance of hollow floor interior slab-column connection (HFISC). In this new connection system, several tube fillers are placed in slab to form hollow concrete. Moreover, locally solid zone, shear components, and hidden beam around the connections are installed to improve the bearing capacity and ductility of specimens. Three slab-column connections with different shear components were tested under cyclic loading and every specimen was constructed with parallel tube fillers in the north direction and orthogonal tube fillers in the south direction. The seismic behavior of specimens was evaluated according to the hysteretic response, skeleton curve, ductility, stiffness degradation, and energy dissipation. A finite element model was then developed and validated by a comparison with the experimental results. Based on experimental results and finite element analysis results, the relative effects of the hollow ratio of slab, the ratio of longitudinal reinforcement, the shear area of bent-up steel bars, and the arm length of welding section steel cross bridging were elucidated through parametric studies. This new slab-column connection showed better plastic deformation capacity while the bearing capacity was kept. Specimens with parallel tube fillers showed better seismic behavior than those of specimens with orthogonal tube fillers.


2019 ◽  
Vol 3 (2) ◽  
pp. 71
Author(s):  
Muhammad Marzuky Saleh ◽  
Edi Widodo

Pump is a device used to move fluid from one place to another through the pipe media as a channel. The pump has 2 important components in its performance, namely: Impeller and pump house (casing). When the pump cannot meet the required capacity it can use series and parallel pump circuits to increase it. When moving the fluid to a high surface or high pressure it will have the specifications of the head and discharge. Fluid flow is a liquid that flows in a pipe. In flow there is fluid pressure and also flow type. There are 3 flow types, namely laminer, transition, turbulent. To reduce turbulence in the flow can be used Tube bundle which is a device consisting of several pipes that are tied together that are attached to a cross section in the pipe. This research was conducted in 4 testing stages, namely series circuit with additional tube bundle, series circuit without additional tube bundle, parallel circuit with additional tube bundle, parallel circuit without additional tube bundle. Each test takes fluid pressure, discharge, flow type. From the results of this study it was found that the parallel circuit pump with an additional tube bundle produces fluid pressure, discharge, flow velocity smaller than the series circuit, whereas when without additional the parallel tube pump bundle produces a fluid pressure, discharge, flow velocity greater than the circuit series, while for the flow type of this study is turbulent flow.


Sign in / Sign up

Export Citation Format

Share Document