Conjugate heat transfer of magnetic mixed convection with radiative and viscous dissipation effects for second-grade viscoelastic fluid past a stretching sheet

2007 ◽  
Vol 27 (11-12) ◽  
pp. 1895-1903 ◽  
Author(s):  
Kai-Long Hsiao
2007 ◽  
Vol 2007 ◽  
pp. 1-21 ◽  
Author(s):  
Kai-Long Hsiao ◽  
Guan-Bang Chen

A conjugate heat transfer problem of a second-grade viscoelastic fluid past a stretching sheet has been studied. Governing equations include heat conduction equation of a stretching sheet, continuity equation, momentum equation, and energy equation of a second-grade fluid, analyzed by a combination of a series expansion method, the similarity transformation, and a second-order accurate finite-difference method. These solutions are used to iterate with the heat conduction equation of the stretching sheet to obtain distributions of the local convective heat transfer coefficient and the stretching sheet temperature. Ranges of dimensionless parameters, the Prandtl numberPr, the elastic numberEand the conduction-convection coefficientNccare from 0.001 to 10, 0.0001 to 0.01, and 0.5 to 2.0, respectively. A parameterG, which is used to represent the dominance of the buoyant effect, is present in governing equations. Results indicated that elastic effect in the flow could increase the local heat transfer coefficient and enhance the heat transfer of a stretching sheet. In addition, same as the results from Newtonian fluid flow and conduction analysis of a stretching sheet, a better heat transfer is obtained with a largerNcc,G, andE.


1970 ◽  
Vol 46 (4) ◽  
pp. 451-456 ◽  
Author(s):  
K Bhattacharyya ◽  
MS Uddin ◽  
GC Layek ◽  
W Ali Pk

In this paper, we obtained solutions of boundary layer flow and heat transfer for two classes of viscoelastic fluid over a stretching sheet with internal heat generation or absorption. In the analysis, we consider second-grade fluid and Walter's liquid B. The governing equations are transformed into self-similar ordinary differential equations by similarity transformations. The flow equation relating to momentum is solved analytically and then the heat equation using the Kummer's function. The analysis reveals that for the increase in magnitude of viscoelastic parameter both the velocity and temperature for a fixed point increase for second-grade fluid and both decrease for Walter's liquid B. Due to increase in Prandtl number and heat sink parameter, the thermal boundary layer thickness reduces, whereas increasing heat source parameter increases that thickness. Key words: Boundary layer flow; Heat transfer; Viscoelastic fluid; Stretching sheet; Heat generation or absorption DOI: http://dx.doi.org/10.3329/bjsir.v46i4.9590 BJSIR 2011; 46(4): 451-456


Sign in / Sign up

Export Citation Format

Share Document