Theoretical study on thermal stability of molten salt for solar thermal power

2013 ◽  
Vol 54 (1) ◽  
pp. 140-144 ◽  
Author(s):  
Xiaolan Wei ◽  
Qiang Peng ◽  
Jing Ding ◽  
Xiaoxi Yang ◽  
Jianping Yang ◽  
...  
Author(s):  
Claudia Martin ◽  
Nils Breidenbach ◽  
Markus Eck

Solar thermal power plants are a promising option for future solar electricity generation. Their main advantage is the possibility to utilize integrated thermal storage capacities, allowing electricity generation on demand. In state of the art solar thermal power plants, two-tank molten-salt thermal energy storages are used. Significant cost reductions are expected by using thermocline thermal energy storage by storing the liquid storage material inside a single tank when compared to a two tank storage system. By embedding a low cost solid filler material inside the storage tank further cost reductions can be achieved. In earlier studies [1, 2] several potential filler materials have been investigated. In these study quartzite turned out to be a promising candidate due to its satisfying thermal stability and availability. At a temperature of approx. 573°C the crystal structure of quartzite changes from trigonal α-quartz phase to the hexagonal β-quartz phase [3]. This quartz conversion results in a volume change [4] that may cause cracking of the quartzite crystals due to weight loads in a packed bed. Since these thermal tests of the study mentioned were limited to 500°C this dunting was not considered. Thus, despite of the published studies there is a need for further, more detailed analysis. One trend in today’s development of solar thermal power plants is to use molten salt as storage material and heat transfer fluid at operating temperatures of 560°C and above. Accordingly, the quartz inversion might limit the applicability of quartzite as a filler material at elevated operating temperatures. Due to this concern, an investigation has been started to investigate the utilizability of natural rocks as low cost filler materials. In the first phase of this investigation a comprehensive literature survey was conducted. Based on this study, magmatic and sedimentary rocks turned out to the most promising rock classes for this application. For the further investigation, basalt was chosen as a suited representative for magmatic and quartzite for sedimentary rocks. In lab-scale tests, these candidate materials were investigated with respect to their: • Calcite content • Thermal stability up to 900°C in air • Thermal stability up to 560°C in molten salt • Cyclic stability between 290°C and 560°C in molten salt • Specific heat capacity up to 600°C In this paper the results of these investigations are presented and future activities are outlined.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
J. Ignacio Ortega ◽  
J. Ignacio Burgaleta ◽  
Félix M. Téllez

Of all the technologies being developed for solar thermal power generation, central receiver systems (CRSs) are able to work at the highest temperatures and to achieve higher efficiencies in electricity production. The combination of this concept and the choice of molten salts as the heat transfer fluid, in both the receiver and heat storage, enables solar collection to be decoupled from electricity generation better than water∕steam systems, yielding high capacity factors with solar-only or low hybridization ratios. These advantages, along with the benefits of Spanish legislation on solar energy, moved SENER to promote the 17MWe Solar TRES plant. It will be the first commercial CRS plant with molten-salt storage and will help consolidate this technology for future higher-capacity plants. This paper describes the basic concept developed in this demonstration project, reviewing the experience accumulated in the previous Solar TWO project, and present design innovations, as a consequence of the development work performed by SENER and CIEMAT and of the technical conditions imposed by Spanish legislation on solar thermal power generation.


2013 ◽  
Vol 805-806 ◽  
pp. 63-69 ◽  
Author(s):  
Di Wu ◽  
Shi Liu

Solar thermal power generation technology is the most feasible technology to compete with fossil fuels in the economy, and is considered to be one of the most promising candidates for providing a major share of the clean and renewable energy needed in the future. The appropriate heat transfer fluid and storage medium is a key technological issue for the future success of solar thermal technologies. Molten salt is one of the best heat transfer and thermal storage fluid for both parabolic trough and tower solar thermal power system. It is very important that molten salt heat transfer mechanisms are understood and can be predicted with accuracy. But studies on molten salts heat transfer are rare. This study will lay a foundation for the application of carbon nanotubes in molten salt which can remarkably improve the stability and capacity of thermal storage. Thermal analysis methods and scanning electron microscope (SEM) are utilized to provide a review of thermophysical properties and thermochemical characteristics of the MWCNTs-salt composite materials.


Sign in / Sign up

Export Citation Format

Share Document