Helical configuration for thermoelectric generation

2016 ◽  
Vol 99 ◽  
pp. 352-357 ◽  
Author(s):  
Xiangning Meng ◽  
Ryosuke O. Suzuki
Author(s):  
Christopher A. Miller ◽  
Bridget Carragher ◽  
William A. McDade ◽  
Robert Josephs

Highly ordered bundles of deoxyhemoglobin S (HbS) fibers, termed fascicles, are intermediates in the high pH crystallization pathway of HbS. These fibers consist of 7 Wishner-Love double strands in a helical configuration. Since each double strand has a polarity, the odd number of double strands in the fiber imparts a net polarity to the structure. HbS crystals have a unit cell containing two double strands, one of each polarity, resulting in a net polarity of zero. Therefore a rearrangement of the double strands must occur to form a non-polar crystal from the polar fibers. To determine the role of fascicles as an intermediate in the crystallization pathway it is important to understand the relative orientation of fibers within fascicles. Furthermore, an understanding of fascicle structure may have implications for the design of potential sickling inhibitors, since it is bundles of fibers which cause the red cell distortion responsible for the vaso-occlusive complications characteristic of sickle cell anemia.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 492
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Mikhail A. Sheremet

In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re1, Re2) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r1, r2) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w2 and 4w2) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location zh = 2.5ws. There is 18% enhancement in the conversion efficiency when distances at zh = ws and zh = 2.5ws are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Felix Keidel ◽  
Sun-Yong Hwang ◽  
Björn Trauzettel ◽  
Björn Sothmann ◽  
Pablo Burset

Author(s):  
Mujahed Aldhaifallah ◽  
Abdul-Wahid A. Saif ◽  
Uthman Baroudi ◽  
Hegazy Rezk ◽  
Ahmed Mohamed

Author(s):  
Francisco P. Brito ◽  
Jorge Martins ◽  
L.M. Goncalves ◽  
Rui Sousa

Sign in / Sign up

Export Citation Format

Share Document