scholarly journals Experimental study on heat transfer enhancement caused by the flow-induced vibration of a prism inside a channel

2017 ◽  
Vol 125 ◽  
pp. 412-424 ◽  
Author(s):  
F. Sastre ◽  
A. Velazquez
2008 ◽  
Vol 16 (6) ◽  
pp. 849-855 ◽  
Author(s):  
Pengcheng XIE ◽  
Fengxiang LI ◽  
Yumei DING ◽  
Hua YAN ◽  
Changfeng GUAN ◽  
...  

2001 ◽  
Author(s):  
Jeung Sang Go ◽  
Geunbae Lim ◽  
Hayong Yun ◽  
Sung Jin Kim ◽  
Inseob Song

Abstract This paper presented design guideline of the microfin array heat sink using flow-induced vibration to increase the heat transfer rate in the laminar flow regime. Effect of the flow-induced vibration of a microfin array on heat transfer enhancement was investigated experimentally by comparing the thermal resistances of the microfin array heat sink and those of a plain-wall heat sink. At the air velocities of 4.4m/s and 5.5 m/s, an increase of 5.5% and 11.5% in the heat transfer rate was obtained, respectively. The microfin flow sensor also characterized the flow-induced vibration of the microfin. It was determined that the microfin vibrates with the fundamental natural frequency regardless of the air velocity. It was also shown that the vibrating displacement of the microfin is increased with increasing air velocity and then saturated over a certain value of air velocity. Based on the numerical analysis of the temperature distribution resulted from microfin vibration and experimental results, a simple heat transfer model (heat pumping model) was proposed to understand the heat transfer mechanism of a microfin array heat sink. Under the geometric and structural constraints, the maximum heat transfer enhancement was obtained at the intersection of the minimum thickness of the microfin and constraint of the bending angle.


Sign in / Sign up

Export Citation Format

Share Document