Longitudinal vortex generator applied to heat transfer enhancement of a flat plate solar water heater

2019 ◽  
Vol 158 ◽  
pp. 113790 ◽  
Author(s):  
Felipe A.S. da Silva ◽  
Daniel J. Dezan ◽  
Aluisio V. Pantaleão ◽  
Leandro O. Salviano
2019 ◽  
Vol 141 (4) ◽  
Author(s):  
F. A. S. Silva ◽  
L. O. Salviano

The solar energy is a renewable source that has a great potential for conversion into thermal energy or for generation of electric power through photovoltaic panels in Brazil. Concerns about environmental impacts and the fossil resources scarcity have motivated the technological development of renewable alternatives to fill out the energy matrix. The flat-plate solar water heater is an equipment used for domestic or commercial applications to heat fluids, which can minimize the demand for electric energy and, consequently, decrease the electrical bill. However, the development of technologies to increase the conversion of solar energy into thermal energy remains a challenge in order to increase the efficiency of these devices. Thus, passive techniques to enhance heat transfer have been applied and those results seem to be promissory. Among them, delta-winglet longitudinal vortex generator (VG) is a consolidated passive technique currently applied on compact heat exchangers, although few works have been applied this technique on the solar water heater. By a computational fluid dynamics approach, in this work, we analyze the augmentation of heat transfer through delta-winglet longitudinal vortex generator inside a tube of a flat-plate solar water heater. For the Reynolds numbers 300, 600, and 900, the better ratio between the heat transfer and the pressure drop penalty is found for the attack angle of the delta-winglet of 30 deg, while the highest heat transfer was to the attack angle of 45 deg. Moreover, the first vortex generators showed significant impact only on the friction factor and could be eliminated of the solar water heater with no penalty to the heat transfer.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 756 ◽  
Author(s):  
Nurril Ikmal Shamsul Azha ◽  
Hilmi Hussin ◽  
Mohammad Shakir Nasif ◽  
Tanweer Hussain

Various studies to improve the thermal performance of flat plate solar collector (FPSC) solar water heater have been conducted, and more are currently in progress. This study aims to review existing methods on thermal performance enhancement for FPSC and discuss on heat-transfer enhancement using vibration and its potential application for FPSC. Ten methods for improving thermal performance are identified, which include applications of nanofluids, absorber coatings, phase change materials (PCM), thermal performance enhancers, FPSC design modifications, polymer materials, heat loss reduction, mini and micro channel and heat-transfer enhancement using vibration. An examination of heat-transfer enhancement using vibration in low frequency ranges for an evacuated-tube solar collector (ETSC) solar water heater system showed that it can potentially achieve heat-transfer enhancement of up to 78%. Nevertheless, there is still a lack of research on the applications of heat-transfer enhancement using vibration on FPSC to date.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Felipe A. S. Silva ◽  
Luis Júnior ◽  
José Silva ◽  
Sandilya Kambampati ◽  
Leandro Salviano

AbstractSolar Water Heater (SWH) has low efficiency and the performance of this type of device needs to be improved to provide useful and ecological sources of energy. The passive techniques of augmentation heat transfer are an effective strategy to increase the convective heat transfer coefficient without external equipment. In this way, recent investigations have been done to study the potential applications of different inserts including wire coils, vortex generators, and twisted tapes for several solar thermal applications. However, few researchers have investigated inserts in SWH which is useful in many sectors where the working fluid operates at moderate temperatures. The longitudinal vortex generators (LVG) have been applied to promote heat transfer enhancement with a low/moderate pressure drop penalty. Therefore, the present work investigated optimal geometric parameters of LVG to enhance the heat transfer for a SWH at low Reynolds number and laminar flow, using a 3D periodical numerical simulation based on the Finite Volume Method coupled to the Genetic Algorithm optimization method (NSGA-II). The LVG was stamped over a flat plate inserted inside a smooth tube operating under a typical residential application corresponding to Reynolds numbers of 300, 600, and 900. The geometric parameters of LGV were submitted to the optimization procedure which can find traditional LVG such as rectangular-winglet and delta-winglet or a mix of them. The results showed that the application of LGVs to enhance heat transfer is an effective passive technique. The different optimal shapes of the LVG for all Reynolds numbers evaluated improved more than 50% of heat transfer. The highest augmentation heat transfer of 62% is found for the Reynolds number 900. However, the best thermo-hydraulic efficiency value is found for the Reynolds number of 600 in which the heat transfer intensification represents 55% of the pressure drop penalty.


Author(s):  
Tariq Amin Khan ◽  
Wei Li ◽  
Zhengjiang Zhang ◽  
Jincai Du ◽  
Sadiq Amin Khan ◽  
...  

Heat transfer is a naturally occurring phenomenon which can be greatly enhanced by introducing longitudinal vortex generators (VGs). As the longitudinal vortices can potentially enhance heat transfer with small pressure loss penalty, VGs are widely used to enhance the heat transfer of flat-plate type heat exchangers. However, there are few researches which deal with its thermal optimization. Three dimensional numerical simulations are performed to study the effect of angle of attack and attach angle (angle between VG and wall) of vortex generator on the fluid flow and heat transfer characteristics of a flat-plate channel. The flow is assumed as steady state, incompressible and laminar within the range of studied Reynolds numbers (Re = 380, 760, 1140). In the present work, the average and local Nusselt number and pressure drop are investigated for Rectangular vortex generator (RVG) with varying angle of attack and attach angle. The numerical results indicate that the heat transfer and pressure drop increases with increasing the angle of attack to a certain range and then decreases with increasing angle of attack. Moreover, the attach angle also plays an importance role; a 90° attach angle is not necessary for enhancing the heat transfer. Usually, heat transfer enhancement is achieved at the expense of pressure drop penalty. To find the optimal position of vortex generator to obtain maximum heat transfer and minimum pressure drop, the data obtained from numerical simulations are used to train a BRANN (Bayesian-regularized artificial neural network). This in turn is used to drive multi-objective genetic algorithm (MOGA) to find the optimal parameters of VGs in the form of Pareto front. The optimal values of these parameters are finally presented.


Sign in / Sign up

Export Citation Format

Share Document