Investigation on the thermal performance of a multi-tube finned latent heat thermal storage pool

Author(s):  
Yongping Huang ◽  
Liping Song ◽  
Suchen Wu ◽  
Xiangdong Liu
2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Asmita Shinde ◽  
Sankalp Arpit ◽  
Pramod KM ◽  
Peddy V C. Rao ◽  
Sandip K. Saha

While solar thermal power plants are increasingly gaining attention and have demonstrated their applications, extending electricity generation after the sunset using phase change material (PCM) still remains a grand challenge. Most of the organic PCMs are known to possess high energy density per unit volume, but low thermal conductivity, that necessitates the use of thermal conductivity enhancers (TCEs) to augment heat transfer within PCM. In this paper, thermal performance and optimization of shell and tube heat exchanger-based latent heat thermal energy storage system (LHTES) using fins as TCE for medium temperature (<300 °C) organic Rankine cycle (ORC)-based solar thermal plant are presented. A commercial grade organic PCM, A164 with melting temperature of 168.7 °C is filled in the shell side and heat transfer fluid (HTF), Hytherm 600 flows through the tubes. A three-dimensional numerical model using enthalpy technique is developed to study the solidification of PCM, with and without fin. Further, the effect of geometrical parameters of fin, such as fin thickness, fin height, and number of fin on the thermal performance of LHTES, is studied. It is found that fin thickness and number of fin play significant role on the solidification process of PCM. Finally, the optimum design of the fin geometry is determined by maximizing the combined objective of HTF outlet temperature and solid fraction of PCM at the end of the discharging period. The latent heat thermal storage system with 24 fins, each of 1 mm thickness and 7 mm height, is found to be the optimum design for the given set of operating parameters.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Philip D. Myers ◽  
D. Yogi Goswami ◽  
Elias Stefanakos

This study describes the development and characterization of novel high-temperature thermal storage media, based on inclusion of transition metal chlorides in the potassium–sodium chloride eutectic system, (K–Na)Cl (melting temperature of 657 °C, latent heat of 278 J/g). At the melting temperature of (K–Na)Cl, infrared (IR) radiation can play a major role in the overall heat transfer process—90% of spectral blackbody radiation falls in the range of 2–13 μm. The authors propose inclusion of small amounts (less than 0.2 wt.%) of IR-active transition metal chlorides to increase radiative absorption and thereby enhance heat transfer rates. A new IR-reflectance apparatus was developed to allow for determination of the spectral absorption coefficient of the newly formulated phase-change materials (PCMs) in the molten state. The apparatus consisted of an alumina crucible coated at the bottom with a reflective (platinum) or absorptive (graphite) surface, a heated ceramic crucible-holder, and a combination of zinc sulfide (ZnS) and zinc selenide (ZnSe) windows for containment of the salt and allowance of inert purge gas flow. Using this apparatus, IR spectra were obtained for various transition metal chloride additives in (K–Na)Cl and improved IR activity, and radiative transfer properties were quantified. Further, thermophysical properties relevant to thermal energy storage (i.e., melting temperature and latent heat) are measured for the pure and additive-enhanced thermal storage media.


Sign in / Sign up

Export Citation Format

Share Document