eutectic system
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 45)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
pp. 118478
Author(s):  
Saugata Sahu ◽  
Samiran Banu ◽  
Anand Kumar Sahu ◽  
B. V. N. Phani Kumar ◽  
Ashok Kumar Mishra

2021 ◽  
Vol 2021 (3) ◽  
pp. 38-47
Author(s):  
D. A. Zakarian ◽  
◽  
A. V. Khachatrian ◽  

To calculate the linear coefficient of thermal expansion (LCTE) and its temperature dependence, a combination of the method of a priori pseudopotential and quasi-harmonic approximation (author's methods) is used. After approximating the results obtained for metal-like materials (carbides, borides, silicides), the LCTE is presented in an analytical form. In the case of quasi-binary eutectic systems based on carbides, borides, silicides, to estimate the interaction energy of the elements of two components, the concept of a virtual crystal (with a virtual cell) along the line of contact of two components is introduced. A virtual cell is assigned a volume average between the volume of a unit cell of two components, taking into account their concentration ratio. The components that make up the eutectic retain their crystal structure, their LCTE can be estimated as for pure components. Without taking into account the influence of interphase interaction, the LCTE of the eutectic system is determined using the rule of mixtures based on the LCTE components, taking into account their volume fraction. Taking into account the influence of the interface on thermal expansion is estimated by the virtual cell assigned to it. To determine the LCTE of the eutectic system, a ratio is proposed that connects the LCTE components and the docking boundaries through the concentration ratio. This method more realistically describes the structure of a quasi-binary eutectic. There is a consistency between the calculated and experimental data. Keywords: electron-ion system energy, interatomic interaction potential, quasiharmonic approximation, linear coefficient of thermal expansion, eutectic temperature.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 7022
Author(s):  
Filipe Oliveira ◽  
Filipa Santos ◽  
Ana Rita C. Duarte

What if a new technology based on therapeutic deep eutectic systems would disrupt the current treatment of major economic and socially burdensome diseases? The classical definition of eutectic systems is that they are the combination of two or more compounds that interact via hydrogen bonds, from which results a melting temperature depression in comparison with that of its individual components. Therapeutic deep eutectic systems are defined as eutectic systems in which at least one of the individual components is an active pharmaceutical ingredient, or a eutectic system in which the active pharmaceutical ingredient is dissolved. Current literature reports on tuberculosis have been mostly based on the most common anti-tuberculosis drugs prescribed. Using eutectic systems based on naturally occurring molecules known for their anti-microbial activity may also present a promising therapeutic strategy able to cope with the prevalence of Mycobacterium tuberculosis and prevent the appearance of multidrug resistance strains. With regards to colorectal cancer, literature has been unravelling combinations of terpenes with anti-inflammatory drugs that are selectively cytotoxic towards colorectal cancer cells and do not compromise the viability of normal intestinal cells. This technology could contribute to preventing tumor growth and metastasis while providing a patient compliance therapeutics, which will be crucial to the success of overcoming the challenges presented by cancers.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1125
Author(s):  
Daya Wang ◽  
Shaoguang Hua ◽  
Liushun Wu ◽  
Kunlong Liu ◽  
Haichuan Wang

In recent years, the steel industry has accumulated approximately 100 million tons of dust annually, severely threatening the environment. Rotary kiln technology is one of the main industrial methods used to process this dust. However, some substances in flue gas congeal on the cooling wall of the gas duct and seriously affect production. In this study, the properties and formation mechanisms of the coagulum were investigated on the basis of experimental and thermodynamic analyses. The experimental results showed that the coagulum is mainly composed of chlorides (KCl, NaCl, and ZnCl2), oxides (ZnO, FeO), and carbon, with three structures: lumps, fibers, and particles. Based on a thermodynamic analysis, a reasonable explanation was proposed to clarify the formation mechanism. The liquid phase (a eutectic system of KCl–NaCl–ZnCl2), dendrites (KCl, NaCl), and particles (ZnO, FeO, C) were found to act as binders, stiffeners, and aggregates in the coagulum, respectively, constituting a composite structure. Liquids acting as binders are essential for coagulum formation, and dendrites and particles strengthen this effect. Furthermore, the eutectic system of chlorides plays a crucial role in coagulum formation. The results of the present study offer a theoretical understanding of gas-duct coagulation and will provide guidance for adopting alleviation measures.


2021 ◽  
pp. 117400
Author(s):  
Shanmukha Kiran Aramanda ◽  
Kamanio Chattopadhyay ◽  
Abhik Choudhury
Keyword(s):  

2021 ◽  
Vol 11 (15) ◽  
pp. 6673
Author(s):  
Bruno Merk ◽  
Anna Detkina ◽  
Seddon Atkinson ◽  
Dzianis Litskevich ◽  
Gregory Cartland-Glover

Molten salt reactors have gained substantial interest in the last years due to their flexibility and their potential for simplified closed fuel cycle operation for massive expansion in low-carbon electricity production, which will be required for a future net-zero society. The importance of a zero-power reactor for the process of developing a new, innovative rector concept, such as that required for the molten salt fast reactor based on iMAGINE technology, which operates directly on spent nuclear fuel, is described here. It is based on historical developments as well as the current demand for experimental results and key factors that are relevant to the success of the next step in the development process of all innovative reactor types. In the systematic modelling and simulation of a zero-power molten salt reactor, the radius and the feedback effects are studied for a eutectic based system, while a heavy metal rich chloride-based system are studied depending on the uranium enrichment accompanied with the effects on neutron flux spectrum and spatial distribution. These results are used to support the relevant decision for the narrowing down of the configurations supported by considerations on cost and proliferation for the follow up 3-D analysis. The results provide for the first time a systematic modelling and simulation approach for a new reactor physics experiment for an advanced technology. The expected core volumes for these configurations have been studied using multi-group and continuous energy Monte-Carlo simulations identifying the 35% enriched systems as the most attractive. This finally leads to the choice of heavy metal rich compositions with 35% enrichment as the reference system for future studies of the next steps in the zero power reactor investigation. An alternative could be the eutectic system in the case the increased core diameter is manageable. The inter-comparison of the different applied codes and approaches available in the SCALE package has delivered a very good agreement between the results, creating trust into the developed and used models and methods.


2021 ◽  
Vol 155 (1) ◽  
pp. 014502
Author(s):  
Adriaan van den Bruinhorst ◽  
Laura J. B. M. Kollau ◽  
Mark Vis ◽  
Marco M. R. M. Hendrix ◽  
Jan Meuldijk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document