Determination of mixing layer height from co-located lidar, ceilometer and wind Doppler lidar measurements: Intercomparison and implications for PM2.5 simulations

2022 ◽  
pp. 101310
Author(s):  
Soojin Park ◽  
Man-Hae Kim ◽  
Huidong Yeo ◽  
Kyuseok Shim ◽  
Hyo-Jung Lee ◽  
...  
2004 ◽  
Author(s):  
Michael Sicard ◽  
Carlos Perez ◽  
Adolfo Comeren ◽  
Jose M. Baldasano ◽  
Francesc Rocadenbosch

2014 ◽  
Vol 7 (1) ◽  
pp. 173-182 ◽  
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of the ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and the ABL vertical structure over ocean and land are analyzed. The new methods are then applied to satellite lidar measurements. The aerosol-derived global marine boundary layer heights are evaluated with marine ABL stratiform cloud top heights and results show a good agreement between them.


2018 ◽  
Vol 35 (3) ◽  
pp. 473-490 ◽  
Author(s):  
Timothy A. Bonin ◽  
Brian J. Carroll ◽  
R. Michael Hardesty ◽  
W. Alan Brewer ◽  
Kristian Hajny ◽  
...  

AbstractA Halo Photonics Stream Line XR Doppler lidar has been deployed for the Indianapolis Flux Experiment (INFLUX) to measure profiles of the mean horizontal wind and the mixing layer height for quantification of greenhouse gas emissions from the urban area. To measure the mixing layer height continuously and autonomously, a novel composite fuzzy logic approach has been developed that combines information from various scan types, including conical and vertical-slice scans and zenith stares, to determine a unified measurement of the mixing height and its uncertainty. The composite approach uses the strengths of each measurement strategy to overcome the limitations of others so that a complete representation of turbulent mixing is made in the lowest km, depending on clouds and aerosol distribution. Additionally, submeso nonturbulent motions are identified from zenith stares and removed from the analysis, as these motions can lead to an overestimate of the mixing height. The mixing height is compared with in situ profile measurements from a research aircraft for validation. To demonstrate the utility of the measurements, statistics of the mixing height and its diurnal and annual variability for 2016 are also presented. The annual cycle is clearly captured, with the largest and smallest afternoon mixing heights observed at the summer and winter solstices, respectively. The diurnal cycle of the mixing layer is affected by the mean wind, growing slower in the morning and decaying more rapidly in the evening with lighter winds.


2013 ◽  
Vol 6 (5) ◽  
pp. 8311-8338
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and ABL vertical structure over ocean (TWP_C2 cite) and land (SGP_C1) are analyzed. The new methods are also applied to satellite lidar measurements. The derived global marine boundary layer structure database shows good agreement with marine ABL stratiform cloud top height.


2020 ◽  
Vol 20 (14) ◽  
pp. 8839-8854 ◽  
Author(s):  
Haofei Wang ◽  
Zhengqiang Li ◽  
Yang Lv ◽  
Ying Zhang ◽  
Hua Xu ◽  
...  

Abstract. The atmospheric mixing layer height (MLH) determines the space in which pollutants diffuse and is thus conducive to the estimation of the pollutant concentration near the surface. The study evaluates the capability of lidar to describe the evolution of the atmospheric mixing layer and then presents a long-term observed climatology of the MLH diurnal cycle. Detection of the mixing layer heights (MLHL and MLHL′) using the wavelet method based on lidar observations was conducted from January 2013 to December 2018 in the Beijing urban area. The two dataset results are compared with radiosonde as case studies and statistical forms. MLHL shows good performance in calculating the convective layer height in the daytime and the residual layer height at night. While MLHL′ has the potential to describe the stable layer height at night, the performance is limited due to the high range gate of lidar. A nearly 6-year climatology for the diurnal cycle of the MLH is calculated for convective and stable conditions using the dataset of MLHL from lidar. The daily maximum MLHL characteristics of seasonal change in Beijing indicate that it is low in winter (1.404±0.751 km) and autumn (1.445±0.837 km) and high in spring (1.647±0.754 km) and summer (1.526±0.581 km). A significant phenomenon is found from 2014 to 2018: the magnitude of the diurnal cycle of MLHL increases year by year, with peak values of 1.291±0.646 km, 1.435±0.755 km, 1.577±0.739 km, 1.597±0.701 km and 1.629±0.751 km, respectively. It may partly benefit from the improvement of air quality. As to converting the column optical depth to surface pollution, the calculated PM2.5 using MLHL data from lidar shows better accuracy than that from radiosonde compared with observational PM2.5. Additionally, the accuracy of calculated PM2.5 using MLHL shows a diurnal cycle in the daytime, with the peak at 14:00 LST. The study provides a significant dataset of MLHL based on measurements and could be an effective reference for atmospheric models of surface air pollution calculation and analysis.


2014 ◽  
Vol 109 ◽  
pp. 48-53 ◽  
Author(s):  
K.K. Shukla ◽  
D.V. Phanikumar ◽  
Rob K. Newsom ◽  
K. Niranjan Kumar ◽  
M. Venkat Ratnam ◽  
...  

2020 ◽  
Author(s):  
Viktor A. Banakh ◽  
Igor N. Smalikho ◽  
Andrey V. Falits

Abstract. A method is proposed for determining the height of the turbulent mixing layer on the basis of the vertical profiles of the dissipation rate of turbulent energy, which is estimated from lidar measurements of the radial wind velocity using conical scanning by a probe beam around the vertical axis. The accuracy of the proposed method is discussed in detail. It is shown that for the estimation of the mixing layer height (MLH) with the acceptable relative error not exceeding 20 %, the signal-to-noise ratio should be no less than −16 dB, when the relative error of lidar estimation of the dissipation rate does not exceed 30 %. The method was tested in an experiment in which the wind velocity turbulence was estimated in smog conditions due to forest fires in Siberia in 2019. The results of the experiment reveal that the relative error of determination of the MLH time series obtained by this method does not exceed 10 % in the period of turbulence development. The estimates of the turbulent mixing layer height by the proposed method are in good agreement with the MLH estimated from the distributions of the variance of radial velocity and the Richardson number in height and time.


2005 ◽  
Author(s):  
Giovanni Martucci ◽  
Renaud Matthey ◽  
Valentin Mitev ◽  
Hans Richner

Sign in / Sign up

Export Citation Format

Share Document