Effective atomic number of composite materials for Compton effect in the gamma ray region 280–1115keV

2010 ◽  
Vol 68 (12) ◽  
pp. 2443-2447 ◽  
Author(s):  
S. Prasanna Kumar ◽  
T.K. Umesh
2018 ◽  
Vol 30 (7) ◽  
pp. 1577 ◽  
Author(s):  
Yutaka Fujimoto ◽  
Keiichiro Saeki ◽  
Daisuke Nakauchi ◽  
Takayuki Yanagida ◽  
Masanori Koshimizu ◽  
...  

Author(s):  
Mustafa Mohammad Rafiei ◽  
Sara Parsaei ◽  
Parminder Kaur ◽  
Kanwar J Singh ◽  
Mehmet Büyükyıldız ◽  
...  

Abstract The attenuation coefficients are important input values in estimating not only the dose and exposure in radiotherapy and medical imaging, but also in the proper design of photon shields. While studies are widely available above 1 keV, the attenuation coefficients of human tissues for photon energies less than 1 keV have not been studied yet. In this study, the attenuation coefficients of water and some human tissues were estimated for low energy photons using the MCNP6.1 code in the energy region 0.1 keV-1 keV. Mass attenuation coefficients were estimated at photon energies of 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 and 1000 eV for water and ten human tissues (Soft, Breast, Lung, Bone, Brain, Eye lens, Ovary, Skin, Thyroid and Prostate). Results were compared with those available in literature and a fairly good agreement has been obtained. These data were then used to calculate the mean free path, half value layer, tenth value layer, effective atomic number and specific gamma-ray constant (useful for calculation of dose rate) as well. Moreover, for comparison the effective atomic number of the water has been obtained using the results of this work and using the data available in NIST database from 0.1 to 1 keV. In addition, the human tissues were compared with some tissue equivalent materials in terms of effective atomic number and specific gamma-ray constant to study the tissue equivalency from the results, the muscle-equivalent liquid with sucrose has been found to be the best tissue equivalent material for soft tissue, eye lens and brain with relative difference below 4.1%.


2018 ◽  
pp. 52-58 ◽  
Author(s):  
І. Romanenko ◽  
M. Holiuk ◽  
A. Nosovsky ◽  
V. Hulik

The paper presents a new composite material for radiation protection based on extra-heavy concrete reinforced by basalt fiber. Basalt fiber is a new material for concrete reinforcement, which provides improved mechanical characteristics of concrete, reduces the level of microcracks and increases the durability of concrete. Within the scope of present work, the gamma-ray radiation protection properties of concrete reinforced with basalt fiber was modeled. Two types of extra-heavy concrete were used for this paper. The main gamma-ray attenuation coefficients such as mean atomic number, mean atomic mass, mean electron density, effective atomic number, effective electron density, Murty effective atomic number were analyzed with help of WinXCom software. It has been shown that the addition of basalt fiber to concrete does not impair its gamma-ray radiation shielding properties. With increasing the basalt fiber dosage in concrete, the radiation properties against gamma radiation are improved. This research was carried out with the financial support of the IAEA, within the terms and conditions of the Research Contract 20638 in the framework of the Coordinated Research Project (CRP) “Accelerator Driven Systems (ADS) Applications and use of Low-Enriched Uranium in ADS (T33002)” within the project “The Two-Zone Subcritical Systems with Fast and Thermal Neutron Spectra for Transmutation of Minor Actinides and Long-Lived Fission Products”.


2021 ◽  
Author(s):  
Uğur Gökmen ◽  
Zübeyde Özkan ◽  
Sema Bilge Ocak

Abstract Gamma-ray and neutron shielding properties of the AA6082 + TiO2 (0-50wt.%) functionally graded composite materials (FGCMs) were investigated using the PSD software. The values of the mean free path (MFP), half-value layer (HVL), linear attenuation coefficients (LAC), mass attenuation coefficient (MAC), tenth-value layer (TVL), exposure buildup factors (EBF), effective atomic number (Zeff), effective conductivity (Ceff), and fast neutron removal cross-sections (FNRC) were found for the energy range between 0.015–15 MeV. The increase in the TiO2 content in the AA6082 composite material has raised the values of MAC and LAC. The calculations for the EBFs were carried out using the G-P fitting method for the energy range between 0.015–15 MeV and penetration depth of up to 40 mfp. The results revealed that HVL values ranged between 0.01-0.116 cm, TVL values ranged between 0.01-0.385 cm, FNRC values ranged between 7.918-10.017 cm-1, and Ceff values ranged between 5.67 x1010 and 9.85x1010 S/m. The AA6082 + TiO2 (50%) composite material was observed to provide the maximum photon and neutron shielding capacity since it offered the highest Zeff, MAC, and FNRC values, and the lowest HVL value. In terms of several aspects, the research is considered original. Besides contributing to several technologies including nanotechnology and space technologies, present research’s results may contribute to nuclear technology.


Sign in / Sign up

Export Citation Format

Share Document