scholarly journals Investigation of Novel Composite Material Based on Extra-Heavy Concrete and Basalt Fiber for Gamma Radiation Protection Properties

2018 ◽  
pp. 52-58 ◽  
Author(s):  
І. Romanenko ◽  
M. Holiuk ◽  
A. Nosovsky ◽  
V. Hulik

The paper presents a new composite material for radiation protection based on extra-heavy concrete reinforced by basalt fiber. Basalt fiber is a new material for concrete reinforcement, which provides improved mechanical characteristics of concrete, reduces the level of microcracks and increases the durability of concrete. Within the scope of present work, the gamma-ray radiation protection properties of concrete reinforced with basalt fiber was modeled. Two types of extra-heavy concrete were used for this paper. The main gamma-ray attenuation coefficients such as mean atomic number, mean atomic mass, mean electron density, effective atomic number, effective electron density, Murty effective atomic number were analyzed with help of WinXCom software. It has been shown that the addition of basalt fiber to concrete does not impair its gamma-ray radiation shielding properties. With increasing the basalt fiber dosage in concrete, the radiation properties against gamma radiation are improved. This research was carried out with the financial support of the IAEA, within the terms and conditions of the Research Contract 20638 in the framework of the Coordinated Research Project (CRP) “Accelerator Driven Systems (ADS) Applications and use of Low-Enriched Uranium in ADS (T33002)” within the project “The Two-Zone Subcritical Systems with Fast and Thermal Neutron Spectra for Transmutation of Minor Actinides and Long-Lived Fission Products”.

2021 ◽  
Vol 2 (1) ◽  
pp. 024-029
Author(s):  
Tekerek Saniye ◽  
Küçükönder Adnan

The aim of this study is to calculate the experimental and theoretical the mass attenuation coefficient some Br compounds by using transmission method. Also using these values were determined the total electronic section, total atomic section, effective atomic number, effective electron density and Kerma. We performed the calculations of these values in attenuation by using direct excitation experimental geometry. The total attenuation cross sections of some halogene Br compounds were measured in a narrow beam good geometry using a high resolution Si(Li) detector in the energy with γ photons at 59.543 keV from Am-241 annular source. Theoretical mass attenuation coefficient values were computed from the XCOM data programme, based on mixture rule method. This study provide new insight into the literature since the values of effective atomic number, electron density and Kerma for some Br compounds have not been determined before. According to the results shown in mass attenuation coefficient, Zeff and Neff of Br compounds are closely associated with chemical structure. This research were undertaken to explore how Bromine compounds is gamma ray shielding material.


2019 ◽  
Vol 107 (6) ◽  
pp. 517-522 ◽  
Author(s):  
M. Almatari

Abstract Radiations are widely used in hospitals and health services in radiotherapy and molecular imaging using x-ray and gamma radiation which considered as the most penetrating radiations and very difficult to shield. In this study, the radiation shielding properties of different zinc oxide (ZnO) concentrations of the (95-x)TeO2-5TiO2-xZnO (x=5, 10, 15, 20, 25, 30 and 40 mol%) glass system was investigated to be introduced as a new transparency effective shielding material. In order to study shielding properties, mass attenuation coefficients in the energy range of 0.015–15 MeV photon energies for the current glass system were calculated using ParShield software. Moreover, half value layer, mean free path and effective atomic number were evaluated using the obtained attenuation coefficient. The results indicated that if ZnO was added to the current glass system the mass attenuation coefficient will be decreased as well as effective atomic number values. The highest mass attenuation coefficient at all energies was found to be in TT5Z5 glass sample as well as the effective atomic number value.


2021 ◽  
Vol 2 (1) ◽  
pp. 034-037
Author(s):  
Tekerek Saniye

In this study the effects of gamma radiations with compounds are an important subject in the field of medicine, radiation shielding and radiation physics. With technological advances the using of radiation has increased in the medicine in the last century. The mass absorpsion coefficient (µ/ρ) is the fundamental a quantity characterizing gamma ray and is of major importance in radiation shielding. In this study, the mass absorption coefficient of painkillers named Ketoprofen, Flurbiprofen, Etodolac, Ibuprofen, Meloxicam, Diclofenac and Aspirin were calculated at energy range from 4.65 keV to 59.543 keV using the WinXCom data programme. In addition total atomic (σta), moleculer (σtm), electronic cross-section (σte), effective atomic number (Zeff), effective electron density (Neff) were calculated.


Pramana ◽  
2012 ◽  
Vol 78 (3) ◽  
pp. 451-458 ◽  
Author(s):  
R S NIRANJAN ◽  
B RUDRASWAMY ◽  
N DHANANJAYA

2021 ◽  
Vol 19 (9) ◽  
pp. 152-158
Author(s):  
Mohammed Yahya Hadi ◽  
Ali Adil Turki Aldalawi ◽  
Karar Mahdi Talib

The effective atomic number (Z effective), total atomic cross-section (б Total) electron density (N effective) have been Measured depending on the mass attenuation coefficient (μ/ρ). By using Gamma-ray radiation (γ), emitted from sources (57𝐶𝑜, 133𝐵𝑎, 22𝑁𝑎, 137𝐶𝑠, 54𝑀𝑛, 𝑎𝑛𝑑 60𝐶𝑜) with energies from (0.122, 0.356,0.511,0.662,0.84,1.17,1.275 𝑎𝑛𝑑 1.33𝑀𝑒𝑉) respectively. using the Sodium Iodide Scintillation Detectors NaI(Tl) at 662 keV and resolution about 8.2% have been measured the mass attenuation coefficients for the sample “Palmitic acid” it’s chemical formula C16H32O2. The data from the mass attenuation coefficient were then employed to study Z effective, N effective, and б total of the sample. In the presence of gamma-ray energy, it was discovered that the effective atomic number and effective electron densities first drop and they tend to remain nearly constant. The experimental values obtained by Z effective and N effective were in excellent agreement with the theoretical values. The theoretical data that is accessible is obtained from XCom, which is available online. The study's findings aid in understanding how (μ/ρ) values change when Zeff and Neff values vary in the case of H, C, and O based biological molecules such as fatty acids.


2019 ◽  
Vol 14 (9) ◽  
pp. 51
Author(s):  
Ho Thi Tuyet Ngan ◽  
Hoang Duc Tam

This work aims to calculate the effective atomic number and electron density by Monte Carlo method. In previous studies, the most widely used solution is to use the transmission method with the narrow gamma-ray beam. In the approach of this work, the gamma-ray beam after going through material is uncollimated to recording by NaI(Tl) detector. To do this, the inner diameter of detector collimator was enlarged with the aim of decreasing the strengthen of radioactive source. The obtained results were compared with NIST data and the experimental values which yield the maximum deviation of 9.05% and 3.43%, respectively. These results show the promising approach in determining the features of material.


2021 ◽  
Vol 19 (11) ◽  
pp. 15-21
Author(s):  
Ali Adil Turki Aldalawi ◽  
Mohammed Yahya Hadi ◽  
Rawaa A. Hameed

The effective atomic number (Z effective), total atomic cross-section (б Total) electron density (N effective) have been Measured depending on the mass attenuation coefficient (μ/ρ). By using Gamma-ray radiation (γ), emitted from sources (57𝐶𝑜, 133𝐵𝑎, 22𝑁𝑎, 137𝐶𝑠, 54𝑀𝑛, 𝑎𝑛𝑑 60𝐶𝑜) with energies from (0.122, 0.356, 0.511, 0.662, 0.84, 1.17, 1.275 𝑎𝑛𝑑 1.33𝑀𝑒𝑉) respectively. using the Sodium Iodide Scintillation Detectors NaI (Tl) at 662 keV and resolution about 8.2% have been measured the mass attenuation coefficients for the sample “Nonanoic acid its common name Pelargonic acid” it’s chemical formula C9H18O2. The data from the mass attenuation coefficient were then employed to study Zeffective, Neffective, and бtotal of the sample. In the presence of gamma-ray energy, it was discovered that the effective atomic number and effective electron densities first drop and they tend to remain nearly constant. The experimental values obtained by Zeffective and Neffective were in excellent agreement with the theoretical values. The theoretical data that is accessible is obtained from XCom, which is available online. The study's findings aid in understanding how (μ/ρ) values change when Zeff and Neff values vary in the case of H, C, and O based biological molecules such as fatty acids.


Sign in / Sign up

Export Citation Format

Share Document