Neutron guide optimization for the Moroccan PGAA system

2021 ◽  
pp. 109783
Author(s):  
L. El Amri ◽  
A. Chetaine ◽  
H. Amsil ◽  
A. Jalil ◽  
B. El mokhtari ◽  
...  
Keyword(s):  
2014 ◽  
Vol 47 (1) ◽  
pp. 237-244 ◽  
Author(s):  
Karsten Vogtt ◽  
Miriam Siebenbürger ◽  
Daniel Clemens ◽  
Christian Rabe ◽  
Peter Lindner ◽  
...  

Small-angle scattering methods have become routine techniques for the structural characterization of macromolecules and macromolecular assemblies like polymers, (block) copolymers or micelles in the spatial range from a few to hundreds of nanometres. Neutrons are valuable scattering probes, because they offer freedom with respect to scattering length density contrast and isotopic labelling of samples. In order to gain maximum benefit from the allotted experiment time, the instrumental setup must be optimized in terms of statistics of scattered intensity, resolution and accessible range in momentum transferQ. The new small-angle neutron scattering instrument V16/VSANS at the Helmholtz-Zentrum in Berlin, Germany, augments neutron guide collimation and pinhole optics with time-of-flight data recording and flexible chopper configuration. Thus, the availableQrange and the respective instrumental resolution in the intermediate and high momentum transfer regions can be adjusted and balanced to the individual experimental requirements. This renders V16/VSANS a flexible and versatile instrument for soft-matter research.


1982 ◽  
Vol 196 (2-3) ◽  
pp. 341-348 ◽  
Author(s):  
J.M. Carpenter ◽  
D.F.R. Mildner

2014 ◽  
Vol 70 (a1) ◽  
pp. C1746-C1746
Author(s):  
Kazuo Kurihara ◽  
Katsuaki Tomoyori ◽  
Taro Tamada ◽  
Ryota Kuroki

The structural information of hydrogen atoms and hydration waters obtained by neutron protein crystallography is expected to contribute to elucidation of protein function and its improvement. However, many proteins, especially membrane proteins and protein complexes, have larger molecular weight and then unit cells of their crystals have larger volume, which is out of range of measurable unit cell volume for conventional diffractometers. Therefore, our group had designed the diffractometer which can cover such crystals with large unit cell volume (target lattice length: 250 Å). This diffractometer is dedicated for protein single crystals and has been proposed to be installed at J-PARC (Japan Proton Accelerator Research Complex). Larger unit cell volume causes a problem to separate spots closer to each other in spatial as well as time dimension in diffraction images. Therefore, our proposed diffractometer adopts longer camera distance (L2 = 800mm) and selects decoupled hydrogen moderator as neutron source which has shorter pulse width. Under the conditions that L1 is 33.5m, beam divergence 0.40and crystal edge size 2mm, this diffractometer is estimated to be able to resolves spots diffracted from crystals with a lattice length of 220 Å in each axis at d-space of 2.0 Å. In order to cover large neutron detecting area due to long camera distance, novel large-area detector (larger than 300mm × 300mm) with a spatial resolution of better than 2.5mm is under development. More than 40 these detectors plan to be installed, providing the total solid angle coverage of larger than 33%. For neutron guide, ellipsoidal supermirror is considered to be adopted to increase neutron flux at the sample position. The final gain factor of this diffractometer is estimated to be about 20 or larger as compared with BIX-3/4 diffractometers operated in the research reactor JRR-3 at JAEA (Japan Atomic Energy Agency) [1,2].


2022 ◽  
Vol 92 (2) ◽  
pp. 327
Author(s):  
А.К. Фомин ◽  
А.П. Серебров

The paper presents the simulation of a complex of reserch with ultracold neutrons at the reactor PIK (Gatchina, Russia). The complex is being built on the basis of a high-intensity source of ultracold neutrons at the channel GEK-4. A Monte Carlo model has been developed, which includes a source, a neutron guide system and an experimental setup for search for the electric dipole moment of a neutron, taking into account their real location in the main hall of the reactor. Using the developed computer model the density of ultracold neutrons in the setup was obtained, which is 200 <sup>-3</sup>. It is 50 times higher than at the source at the Institut Laue-Langevin (Grenoble, France). This density will allow to achieve a sensitivity of measurements in the experiment of 1·10<sup>-27</sup> е·cm/year.


2020 ◽  
Vol 15 (04) ◽  
pp. P04011-P04011
Author(s):  
A.P.S. Souza ◽  
L.P. de Oliveira ◽  
F. Yokaichiya ◽  
F.A. Genezini ◽  
M.K.K.D. Franco
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document