large unit cell
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 4)

H-INDEX

15
(FIVE YEARS 1)

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Elakkiya A. ◽  
Radha Sankararajan ◽  
Sreeja B.S.

Purpose The proposed metamaterial absorber (MMA) has the following advantages: first, the structure of the MMA consists of one planar metallic resonator, which presents a new design approach to obtain a multiband absorption response, rather than using multiple unit-cells in the one large unit cell or stacking different layers. Second, the simultaneous realization of triple-band and dual-band absorption (or bi-functional absorption) at five different frequencies can integrate the respective advantages of the triple functions of the triple-band MMA and double-band MMA, and therefore, the bi-functional MMA will find more application prospects than multiple-functional devices of triple-band and dual-band. Third, the authors simulated the three combinations of MMA here, which is indium tin oxide (ITO)-Polyimide-ITO, ITO-Teflon-ITO and ITO-polyethylene terephthalate (PET)-ITO for the same planar structure and achieve a high absorption rate. Finally, the proposed structure is polarization and angle independent in nature. Design/methodology/approach This absorption device consists of the top circular resonator, the middle insulating SiO2 medium layer and the bottom metallic copper ground plane placed on a substrate. The conductivity of the copper metal is s = 5.8 × 107 s/m. As the transmission of the MMA structure is zero, the substrate materials can be selected randomly. Totally four combinations of terahertz MMA are designed and simulated here which are ITO- SiO2 –ITO, ITO-Polyimide-ITO, ITO-Teflon-ITO and ITO- PET-ITO for the same planar structure. Findings Compared with previous MMAs, the proposed MMA has the following advantages: First, the structure of the MMA consists of one planar metallic resonator, which presents a new design approach to obtain a multiband absorption response, rather than using multiple unit-cells in the one large unit cell or stacking different layers. Second, the simultaneous realization of triple-band and dual-band absorption (or bi-functional absorption) at five different frequencies can integrate the respective advantages of the triple functions of the triple-band MMA and double-band MMA, and therefore, the bi-functional MMA will find more application prospects than multiple-functional devices of triple-band and dual-band. Third, the authors simulated the three combinations of MMA here, which is ITO-polyimide-ITO, ITO-Teflon-ITO and ITO- PET-ITO for the same planar structure and achieve a high absorption rate. Finally, the proposed structure is polarization and angle independent in nature. Originality/value First, the structure of the MMA consists of one planar metallic resonator, which presents a new design approach to obtain a multiband absorption response, rather than using multiple unit-cells in the one large unit cell or stacking different layers. Second, the simultaneous realization of triple-band and dual-band absorption (or bi-functional absorption) at five different frequencies can integrate the respective advantages of the triple functions of the triple-band MMA and double-band MMA, and therefore, the bi-functional MMA will find more application prospects than multiple-functional devices of triple-band and dual-band. Third, the authors simulated the three combinations of MMA here, which is ITO-polyimide-ITO, ITO-Teflon-ITO and ITO-PET-ITO for the same planar structure and achieve a high absorption rate. Finally, the proposed structure is polarization and angle independent in nature.


2021 ◽  
Author(s):  
San-Tai Wang ◽  
Chen-Hui Liu ◽  
Chan Zheng ◽  
De-Jing Li ◽  
Wei-Hui Fang ◽  
...  

Present herein is the synthesis, structure, and optical properties of aluminum(III)-zinc(II) heterometallic compound AlOC-57. This compound possesses a large unit cell (approximately sixteen thousand atoms) and three-shell nano-plate structure. The...


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1028 ◽  
Author(s):  
M. Mashrur Zaman ◽  
Sytle M. Antao

This study investigates the crystal chemistry of monazite (APO4, where A = Lanthanides = Ln, as well as Y, Th, U, Ca, and Pb) based on four samples from different localities using single-crystal X-ray diffraction and electron-probe microanalysis. The crystal structure of all four samples are well refined, as indicated by their refinement statistics. Relatively large unit-cell parameters (a = 6.7640(5), b = 6.9850(4), c = 6.4500(3) Å, β = 103.584(2)°, and V = 296.22(3) Å3) are obtained for a detrital monazite-Ce from Cox’s Bazar, Bangladesh. Sm-rich monazite from Gunnison County, Colorado, USA, has smaller unit-cell parameters (a = 6.7010(4), b = 6.9080(4), c = 6.4300(4) Å, β = 103.817(3)°, and V = 289.04(3) Å3). The a, b, and c unit-cell parameters vary linearly with the unit-cell volume, V. The change in the a parameter is large (0.2 Å) and is related to the type of cations occupying the A site. The average <A-O> distances vary linearly with V, whereas the average <P-O> distances are nearly constant because the PO4 group is a rigid tetrahedron.


2019 ◽  
Vol 75 (9) ◽  
pp. 852-860 ◽  
Author(s):  
Jeffrey Lovelace ◽  
Václav Petrícek ◽  
Garib Murshudov ◽  
Gloria E. O. Borgstahl

Theoretically, crystals with supercells exist at a unique crossroads where they can be considered as either a large unit cell with closely spaced reflections in reciprocal space or a higher dimensional superspace with a modulation that is commensurate with the supercell. In the latter case, the structure would be defined as an average structure with functions representing a modulation to determine the atomic location in 3D space. Here, a model protein structure and simulated diffraction data were used to investigate the possibility of solving a real incommensurately modulated protein crystal using a supercell approximation. In this way, the answer was known and the refinement method could be tested. Firstly, an average structure was solved by using the `main' reflections, which represent the subset of the reflections that belong to the subcell and in general are more intense than the `satellite' reflections. The average structure was then expanded to create a supercell and refined using all of the reflections. Surprisingly, the refined solution did not match the expected solution, even though the statistics were excellent. Interestingly, the corresponding superspace group had multiple 3D daughter supercell space groups as possibilities, and it was one of the alternate daughter space groups that the refinement locked in on. The lessons learned here will be applied to a real incommensurately modulated profilin–actin crystal that has the same superspace group.


2018 ◽  
Vol 51 (3) ◽  
pp. 596-605 ◽  
Author(s):  
Kazuo Kurihara ◽  
Yu Hirano ◽  
Kenichi Oikawa ◽  
Masahide Harada ◽  
Tatsuya Nakamura ◽  
...  

Structural information on hydrogen atoms and hydration water molecules obtained by neutron protein crystallography is expected to contribute to the elucidation and improvement of protein function. However, many proteins, especially membrane proteins and protein complexes, have large molecular weights and the unit cells of their crystals have large volumes, which are out of the range of unit-cell volumes measurable by conventional diffractometers because a large unit-cell volume causes difficulty in separating Bragg peaks close to each other in the spatial and time dimensions in diffraction images. Therefore, a new diffractometer has been designed at the Japan Accelerator Research Complex (J-PARC), which can measure crystals with a large unit-cell volume. The proposed diffractometer uses a large camera distance (L 2 = 800 mm) and more than 40 novel large-area detectors (larger than 320 × 320 mm). In addition, a decoupled hydrogen moderator, which has a narrow pulse width, is selected as the neutron source. This diffractometer is estimated to be able to measure crystals with a lattice length of 250 Å along each axis at d min = 2.0 Å. Ellipsoidal and curved shapes were introduced in the vertical and horizontal guide designs, respectively, providing an estimated neutron flux of 6 × 105 n s−1 mm−2 in the wavelength range 1.5–5.5 Å.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1746-C1746
Author(s):  
Kazuo Kurihara ◽  
Katsuaki Tomoyori ◽  
Taro Tamada ◽  
Ryota Kuroki

The structural information of hydrogen atoms and hydration waters obtained by neutron protein crystallography is expected to contribute to elucidation of protein function and its improvement. However, many proteins, especially membrane proteins and protein complexes, have larger molecular weight and then unit cells of their crystals have larger volume, which is out of range of measurable unit cell volume for conventional diffractometers. Therefore, our group had designed the diffractometer which can cover such crystals with large unit cell volume (target lattice length: 250 Å). This diffractometer is dedicated for protein single crystals and has been proposed to be installed at J-PARC (Japan Proton Accelerator Research Complex). Larger unit cell volume causes a problem to separate spots closer to each other in spatial as well as time dimension in diffraction images. Therefore, our proposed diffractometer adopts longer camera distance (L2 = 800mm) and selects decoupled hydrogen moderator as neutron source which has shorter pulse width. Under the conditions that L1 is 33.5m, beam divergence 0.40and crystal edge size 2mm, this diffractometer is estimated to be able to resolves spots diffracted from crystals with a lattice length of 220 Å in each axis at d-space of 2.0 Å. In order to cover large neutron detecting area due to long camera distance, novel large-area detector (larger than 300mm × 300mm) with a spatial resolution of better than 2.5mm is under development. More than 40 these detectors plan to be installed, providing the total solid angle coverage of larger than 33%. For neutron guide, ellipsoidal supermirror is considered to be adopted to increase neutron flux at the sample position. The final gain factor of this diffractometer is estimated to be about 20 or larger as compared with BIX-3/4 diffractometers operated in the research reactor JRR-3 at JAEA (Japan Atomic Energy Agency) [1,2].


Sign in / Sign up

Export Citation Format

Share Document