Soil biodiversity and ecosystem functions across Europe: A transect covering variations in bio-geographical zones, land use and soil properties

2016 ◽  
Vol 97 ◽  
pp. 1-2 ◽  
Author(s):  
P. Lemanceau ◽  
R. Creamer ◽  
B.S. Griffiths
2020 ◽  
Author(s):  
QUANCHAO ZENG ◽  
Yingze Meitang ◽  
Manuel Delgado-Baquerizo ◽  
Yonghong Wu ◽  
Wenfeng Tan

Abstract Background: The impacts of the conversion of natural to agricultural ecosystem on soil biodiversity and ecosystem functions are still disputable. Here, we compared the soil biodiversity (bacteria and fungi) and ecosystem functions of citrus orchards in different stages of succession (5–30 years) with those in adjacent natural ecosystems. Different management strategies were also considered for one of this stage (15 years). Results: The results indicate that changes from natural vegetation land to citrus orchards would lead to reduced soil bacterial diversity, as well as significant declines in multiple ecosystem functions associated with C cycle after 30 years of citrus plantation. However, the functions associated with N and P cycle were enhanced by the plantation. Citrus plantation negatively affected the C cycle by reducing the soil microbial diversity. Reduction in soil bacterial biodiversity was indirectly driven by increased soil acidification resulting from citrus plantation, while wheat straw addition could alleviate the reduction (15-year stage). Compared with natural vegetation, citrus plantation also reduced the relative abundance of multiple phylotypes, including Alphaproteobacteria, Deltaproteobacteria, Subgroup_6, Subgroup_4, Anaerolineae and Bacteroidia. The ecological clusters of soil bacteria and fungi were significantly associated with multiple ecosystem functions, suggesting that citrus planting altered multiple ecosystem functions via ecological clusters. Conclusions: Taken together, our results indicate that soil biodiversity, soil functions and C:N:P coupling are sensitive to the conversion of natural vegetation land to agricultural land, and further suggest that proper management of soil acidification can address some negative impacts of land use conversion on soil biodiversity and functions.


Author(s):  
N.N. Krupina ◽  

Based on the analysis of the tense ecological situation in the industrial zones of industrial cities, the role and place of special landscaping areas in the implementation of national projects is substantiated. From the perspective of the ecosystem approach, a set of requirements and a list of priority optimization decisions regarding the planning organization of environmental protection landscaping are proposed. The matrix of situational analysis of the state and the composition of indicators for assessing the barrier potential of a territory with a special land use regime are presented.


Oecologia ◽  
2021 ◽  
Author(s):  
Jörg Bendix ◽  
Nicolay Aguire ◽  
Erwin Beck ◽  
Achim Bräuning ◽  
Roland Brandl ◽  
...  

AbstractTropical mountain ecosystems are threatened by climate and land-use changes. Their diversity and complexity make projections how they respond to environmental changes challenging. A suitable way are trait-based approaches, by distinguishing between response traits that determine the resistance of species to environmental changes and effect traits that are relevant for species' interactions, biotic processes, and ecosystem functions. The combination of those approaches with land surface models (LSM) linking the functional community composition to ecosystem functions provides new ways to project the response of ecosystems to environmental changes. With the interdisciplinary project RESPECT, we propose a research framework that uses a trait-based response-effect-framework (REF) to quantify relationships between abiotic conditions, the diversity of functional traits in communities, and associated biotic processes, informing a biodiversity-LSM. We apply the framework to a megadiverse tropical mountain forest. We use a plot design along an elevation and a land-use gradient to collect data on abiotic drivers, functional traits, and biotic processes. We integrate these data to build the biodiversity-LSM and illustrate how to test the model. REF results show that aboveground biomass production is not directly related to changing climatic conditions, but indirectly through associated changes in functional traits. Herbivory is directly related to changing abiotic conditions. The biodiversity-LSM informed by local functional trait and soil data improved the simulation of biomass production substantially. We conclude that local data, also derived from previous projects (platform Ecuador), are key elements of the research framework. We specify essential datasets to apply this framework to other mountain ecosystems.


2021 ◽  
Author(s):  
Felipe Bastida ◽  
David J. Eldridge ◽  
Carlos García ◽  
G. Kenny Png ◽  
Richard D. Bardgett ◽  
...  

AbstractThe relationship between biodiversity and biomass has been a long standing debate in ecology. Soil biodiversity and biomass are essential drivers of ecosystem functions. However, unlike plant communities, little is known about how the diversity and biomass of soil microbial communities are interlinked across globally distributed biomes, and how variations in this relationship influence ecosystem function. To fill this knowledge gap, we conducted a field survey across global biomes, with contrasting vegetation and climate types. We show that soil carbon (C) content is associated to the microbial diversity–biomass relationship and ratio in soils across global biomes. This ratio provides an integrative index to identify those locations on Earth wherein diversity is much higher compared with biomass and vice versa. The soil microbial diversity-to-biomass ratio peaks in arid environments with low C content, and is very low in C-rich cold environments. Our study further advances that the reductions in soil C content associated with land use intensification and climate change could cause dramatic shifts in the microbial diversity-biomass ratio, with potential consequences for broad soil processes.


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
Fatihu Kabir Sadiq ◽  
Lemuel Musa Maniyunda ◽  
Abdulraheem Okehi Anumah ◽  
Kayode Adesina Adegoke

Ecosphere ◽  
2017 ◽  
Vol 8 (12) ◽  
pp. e02032 ◽  
Author(s):  
Jan L. G. Leidinger ◽  
Martin M. Gossner ◽  
Wolfgang W. Weisser ◽  
Christiane Koch ◽  
Zully L. Rosadio Cayllahua ◽  
...  
Keyword(s):  
Land Use ◽  

Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 358
Author(s):  
Elena Gagnarli ◽  
Giuseppe Valboa ◽  
Nadia Vignozzi ◽  
Donatella Goggioli ◽  
Silvia Guidi ◽  
...  

Sustainable agriculture largely depends on soil biodiversity and requires efficient methods to assess the effectiveness of agronomic planning. Knowledge of the landscape and relative pedosite is enriched by data on the soil microarthropod community, which represent useful bio-indicators for early soil-quality detection in land-use change (LUC). In the hilly Maremma region of Grosseto, Italy, two areas, a >10ys meadow converted into a vineyard and an old biodynamic vineyard (no-LUC), were selected for evaluating the LUC effect. For maintaining soil vitality and ecosystem services by meadow, the vineyard was planted and cultivated using criteria of the patented “Corino method”. The aim was to evaluate the LUC impact, within one year, by assessing parameters characterizing soil properties and soil microarthropod communities after the vineyard was planted. The adopted preservative method in the new vineyards did not show a detrimental impact on the biodiversity of soil microarthropods, and in particular, additional mulching contributed to a quick recovery from soil stress due to working the plantation. In the short term, the adopted agricultural context confirmed that the targeted objectives preserved the soil quality and functionality.


Sign in / Sign up

Export Citation Format

Share Document