Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China

2017 ◽  
Vol 119 ◽  
pp. 407-416 ◽  
Author(s):  
Junjie Liu ◽  
Zhenhua Yu ◽  
Qin Yao ◽  
Xiaojing Hu ◽  
Wu Zhang ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1526
Author(s):  
Xiaoqin Yang ◽  
Yang Wang ◽  
Luying Sun ◽  
Xiaoning Qi ◽  
Fengbin Song ◽  
...  

Conservative agricultural practices have been adopted to improve soil quality and maintain crop productivity. An efficient intercropping of maize with mushroom has been developed in Northeast China. The objective of this study was to evaluate and compare the effects of planting patterns on the diversity and structure of the soil bacterial communities at a 0–20 cm depth in the black soil zone of Northeast China. The experiment consisted of monoculture of maize and mushroom, and intercropping in a split-plot arrangement. The characteristics of soil microbial communities were performed by 16S rRNA gene amplicom sequencing. The results showed that intercropping increased soil bacterial richness and diversity compared with maize monoculture. The relative abundances of Acidobacteria, Chloroflexi, Saccharibacteria and Planctomycetes were significantly higher, whereas Proteobacteria and Firmicutes were lower in intercropping than maize monoculture. Redundancy analysis suggested that pH, NO3−-N and NH4+-N contents had a notable effect on the structure of the bacterial communities. Moreover, intercropping significantly increased the relative abundance of carbohydrate metabolism pathway functional groups. Overall, these findings demonstrated that intercropping of maize with mushroom strongly impacts the physical and chemical properties of soil as well as the diversity and structure of the soil bacterial communities, suggesting this is a sustainable agricultural management practice in Northeast China.


2014 ◽  
Vol 383 (1-2) ◽  
pp. 203-216 ◽  
Author(s):  
Hui Li ◽  
Dandan Ye ◽  
Xugao Wang ◽  
Matthew Lee Settles ◽  
Jun Wang ◽  
...  

2020 ◽  
Author(s):  
Suzanne Lynn Ishaq ◽  
Tim Seipel ◽  
Carl Yeoman ◽  
Fabian D Menalled

Little knowledge exists on whether soil bacteria are impacted by cropping systems and disease status in current and predicted climate scenarios. We assessed the impact of soil moisture and temperature, weed communities, and disease status on soil bacterial communities across three cropping systems: conventional no-till (CNT) utilizing synthetic pesticides and herbicides, 2) USDA-certified tilled organic (OT), and 3) USDA-certified organic with sheep grazing (OG). Sampling date within the growing season, and associated soil temperature and moisture, exerted the greatest effect on bacterial communities, followed by cropping system, Wheat streak mosaic virus (WSMV) infection status, and weed community. Soil temperature was negatively associated with bacterial richness and evenness, while soil moisture was positively associated with bacterial richness and evenness. Both soil temperature and moisture altered soil bacterial community similarity. Inoculation with WSMV altered community similarity, and there was a date x virus interaction on bacterial richness in CNT and OT systems, as well as an interaction between WSMV x climate. In May and July, cropping system altered the effect of climate change on the bacterial community composition in hotter, and hotter and drier conditions not treated with WSMV, as compared to ambient conditions. In areas treated with WSMV, there were interactions between cropping system, sampling date, and climate conditions, indicating the effect of multiple stressors on bacterial communities in soil. Overall, this study indicates that predicted climate modifications as well as biological stressors play a fundamental role in the impact of cropping systems on soil bacterial communities.


2010 ◽  
Vol 46 (1) ◽  
pp. 119-124 ◽  
Author(s):  
Ju-Pei Shen ◽  
Li-Mei Zhang ◽  
Jun-Fu Guo ◽  
Jessica L. Ray ◽  
Ji-Zheng He

mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Suzanne L. Ishaq ◽  
Tim Seipel ◽  
Carl Yeoman ◽  
Fabian D. Menalled

ABSTRACT Little knowledge exists on how soil bacteria in agricultural settings are impacted by management practices and environmental conditions in current and predicted climate scenarios. We assessed the impact of soil moisture, soil temperature, weed communities, and disease status on soil bacterial communities in three cropping systems: (i) conventional no-till (CNT) systems utilizing synthetic pesticides and herbicides, (ii) USDA-certified tilled organic (OT) systems, and (iii) USDA-certified organic systems with sheep grazing (OG). Sampling date within the growing season and associated soil temperature and moisture exerted the greatest effect on bacterial communities, followed by cropping system, Wheat streak mosaic virus (WSMV) infection status, and weed community. Soil temperature was negatively correlated with bacterial richness and evenness, while soil moisture was positively correlated with bacterial richness and evenness. Soil temperature and soil moisture independently altered soil bacterial community similarity between treatments. Inoculation of wheat with WSMV altered the associated soil bacteria, and there were interactions between disease status and cropping system, sampling date, and climate conditions, indicating the effect of multiple stressors on bacterial communities in soil. In May and July, cropping system altered the effect of climate change on the bacterial community composition in hotter conditions and in hotter and drier conditions compared to ambient conditions, in samples not treated with WSMV. Overall, this study indicates that predicted climate modifications as well as biological stressors play a fundamental role in the impact of cropping systems on soil bacterial communities. IMPORTANCE Climate change is affecting global moisture and temperature patterns, and its impacts are predicted to worsen over time, posing progressively larger threats to food production. In the Northern Great Plains of the United States, climate change is forecast to increase temperature and decrease precipitation during the summer, and it is expected to negatively affect cereal crop production and pest management. In this study, temperature, soil moisture, weed communities, and disease status had interactive effects with cropping system on bacterial communities. As local climates continue to shift, the dynamics of above- and belowground associated biodiversity will also shift, which will impact food production and increase the need for more sustainable practices.


Sign in / Sign up

Export Citation Format

Share Document