Alpine meadow degradation enhances the temperature sensitivity of soil carbon decomposition on the Qinghai–Tibetan plateau

2022 ◽  
Vol 170 ◽  
pp. 104290
Author(s):  
Junmin Pei ◽  
Dong Yan ◽  
Jinquan Li ◽  
La Qiong ◽  
Yuanwu Yang ◽  
...  
2020 ◽  
Vol 42 (3) ◽  
pp. 171
Author(s):  
Huilong Lin ◽  
Feng Zhang

Understanding the process and mechanisms of alpine meadow degradation is crucial for restoration and management in the Three-River Headwaters region, Qinghai-Tibetan Plateau, China. However, little is known about this complex and controversial problem because identification and quantification of the underlying causes is difficult. This research aimed to build a spatiotemporal dynamical model for alpine meadow degradation, capturing the natural process of erosion at the interface of barren patches and undamaged meadow. The model clarified the role of barren patches and meadow connectivity in degradation, and identified the ecological mechanisms and processes accounting for the spatial and temporal pattern of degradation. A fragmentation and percolation threshold exists in the process of meadow degradation, independent of spatial scale. An impulsive differential equation was used to investigate the consequence of periodic restoration of degraded meadow. Both the level of meadow degradation and the restoration period play crucial roles in determining whether the meadow can be successfully restored. This research has demonstrated theoretically that the effectiveness of meadow restoration by periodic effort depends on the degree of degradation.


2018 ◽  
Vol 22 (S4) ◽  
pp. 8193-8198 ◽  
Author(s):  
Chunmei Li ◽  
Yuming Wang ◽  
Tian Fang ◽  
Xinke Zhou ◽  
Peng Cui

2013 ◽  
Vol 675 ◽  
pp. 280-283
Author(s):  
Qiu Xiang Tian ◽  
Hong Bo He ◽  
Xu Dong Zhang

The mineralization of soil carbon materials potentially alters carbon release from soil and the atmospheric carbon concentration in engineering. Despite this central role in the decomposition of soil carbon materials, few studies have been conducted on how climate warming affects this carbon emissions and then response in return back. To study this, five soils were incubated in 5, 15, 25 °C for one month. Soil shifted to warming condition slowed down the increasing rate of decomposition causing by higher temperature. Furthermore, raising the soil environment temperature to 25 °C weakened the temperature sensitivity of the decomposition of these carbon materials, and the temperature sensitivity enhanced at lower temperature. This “thermal adaptation” of carbon material would potentially slow down carbon loss which accelerated by climate change technically.


2018 ◽  
Author(s):  
wenjuan zhang ◽  
xian xue ◽  
fei peng ◽  
quangang you ◽  
jing pan ◽  
...  

Soil microbial community structure is an effective indicator to reflect changes in soil quality. Little is known about the effect of alpine meadow degradation on the soil bacterial and fungal community. In this study, we used the Illumina MiSeq sequencing method to analyze the microbial community structure of alpine meadow soil in five different degradation levels (i.e., non-degraded (ND), slightly degraded (LD), moderately degraded (MD), severely degraded (SD), and very severely degraded (VD)) in the Qinghai-Tibet Plateau. Proteobacteria, Actinobacteria, and Acidobacteria were the mainly bacterial phyla in meadow soil across all five degradation levels investigated. Basidiomycota was the mainly fungal phylum in ND; however, we found a shift from Basidiomycota to Ascomycota with an increase (severity) in degradation level. The overall proportion of Cortinariaceae exhibited high fungal variability, and reads were highest in ND (62.80%). Heatmaps of bacterial genera and fungal families showed a two-cluster sample division on a genus/family level: (1) an ND and LD group and (2) an SD, VD, and MD group. Redundancy analysis (RDA) showed that 79.7%and 71.3% of the variance in bacterial and fungal composition, respectively, could be explained by soil nutrient conditions (soil organic carbon, total nitrogen, and moisture) and plant properties (below-ground biomass). Our results indicate that meadow degradation affects both plant and soil properties and consequently drives changes in soil microbial community structure.


Sign in / Sign up

Export Citation Format

Share Document