In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction

2017 ◽  
Vol 396 ◽  
pp. 1840-1848 ◽  
Author(s):  
C.X. Wang ◽  
Y. Ren ◽  
J.C. Lv ◽  
Q.Q. Zhou ◽  
Z.P. Ma ◽  
...  
2016 ◽  
Vol 87 (19) ◽  
pp. 2407-2419 ◽  
Author(s):  
Qingqing Zhou ◽  
Jingchun Lv ◽  
Yu Ren ◽  
Jiayi Chen ◽  
Dawei Gao ◽  
...  

This study presented a simple and environmentally friendly method of in situ synthesis of silver nanoparticles (AgNPs) on cotton fabrics for durable ultraviolet (UV) protection and antibacterial activity using Aloe vera leaf extraction (AVE) as a reducing and stabilizing agent. Cotton fabrics were pretreated in water, and then immersed in AgNO3 and AVE, respectively. Cotton fabrics were characterized by small angle X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis, UV protection, antibacterial activity, and laundering durability. Comparing with the smooth surface of the control cotton fabric, SEM and energy dispersive X-ray spectrometry (EDX) results showed that there were a considerable number of Ag2O and AgNPs loading on the surface of the pretreated and Ag loaded cotton fabrics. The XRD pattern indicated, respectively, the existence of Ag2O and AgNPs, the structures of which were similar to JCPDS File No.65-3289 and JCPDS File No. 01-071-4613 on the pretreated and Ag loaded cotton fabrics. The pretreated and Ag loaded cotton fabrics showed excellent UV protection, antibacterial activity, and laundering durability, especially the Ag loaded cotton fabric, of which the UV protection factor value and transmission of UVA were 148 and 1.11%, respectively, after 20 washing cycles, and the clear zone width was more than 4 mm against E. coli or S. aureus. AgNPs facilitated the improvement of the thermal property of the cotton fabrics. Thus this facile in situ reduction of AgNPs with AVE may bring a promising and green strategy to produce functional textiles.


2012 ◽  
Vol 42 (4) ◽  
pp. 459-474 ◽  
Author(s):  
Mohammad E Yazdanshenas ◽  
Mohammad Shateri-Khalilabad

Cellulose ◽  
2021 ◽  
Author(s):  
Nina Čuk ◽  
Martin Šala ◽  
Marija Gorjanc

Abstract The development of cellulose-based textiles that are functionalised with silver nanoparticles (AgNP), synthesised according to a green approach, and offer protection against ultraviolet (UV) radiation and pathogenic bacteria is very important today. In the present work we demonstrate the environmentally friendly approach to obtain such textile material by AgNP synthesis directly (in-situ) on cotton fabrics, using water extracts of plant food waste (green tea leaves, avocado seed and pomegranate peel) and alien invasive plants (Japanese knotweed rhizome, goldenrod flowers and staghorn sumac fruit) as reducing agents. The extracts were analysed for their total content of phenols and flavonoids and their antioxidant activity. The synthesised AgNP on cotton were round, of different size and amount depending on the reducing agent used. The highest amount of AgNP was found for samples where Japanese knotweed rhizome extract was used as reducing agent and the lowest where extracts of goldenrod flowers and green tea leaves were used. Regardless of the reducing agent used to form AgNP, all cotton samples showed excellent protection against E. coli and S. aureus bacteria and against UV radiation with UV protection factor values above 50. The best results for UV protection even after the twelve repetitive washing cycles were found for the sample functionalized with AgNP synthesised with an extract of the Japanese knotweed rhizome. Due to the presence of AgNP on cotton, the air permeability and thermal conductivity decreased. AgNP had no effect on the change in breaking strength or elongation of fabrics. Graphic abstract


2014 ◽  
Vol 53 (11) ◽  
pp. 4147-4155 ◽  
Author(s):  
Anna Bacciarelli-Ulacha ◽  
Edward Rybicki ◽  
Edyta Matyjas-Zgondek ◽  
Aleksandra Pawlaczyk ◽  
Malgorzata I. Szynkowska

2021 ◽  
Vol 891 ◽  
pp. 37-42
Author(s):  
Sheila Shahidi ◽  
Hakimeh Mohammadbagherloo ◽  
Seyedmohammad Elahi ◽  
Sanaz Dalalsharifi ◽  
Rattanaphol Mongkholrattanasit

In this paper, the sol-gel method was used for in-situ synthesis of SiO2 nanoparticles (NPs) on cotton fabrics with tetraethyl orthosilicate (TEOS) in the presence of acid and alkaline indicators. The samples were characterized using by (X-ray diffraction) XRD, (scanning electron Microscopy) SEM, (Inductively coupled plasma) ICP, water drop test and also the flame retardant properties were studied by char yield. The SEM images showed that the nanoparticles are spherical in shape and the acidity or alkalinity of the medium has an effect on the formation of particles. The XRD patterns showed the typical diffraction of amorphous SiO2 (Si-O short-order structure), also ICP analysis showed that by washing the fabrics, the nanoparticles are still present on the fabric, and this indicated the stability of the washing of the fabrics impregnated with the nanoparticles. By in-situ synthesis of SiO2 nanoparticles, the flame retardant properties have been improved significantly and the amount of residual char was increased and samples were observed to be hydrophilic.


Cellulose ◽  
2017 ◽  
Vol 25 (1) ◽  
pp. 829-841 ◽  
Author(s):  
Darka Marković ◽  
Matea Korica ◽  
Mirjana Kostić ◽  
Željko Radovanović ◽  
Zoran Šaponjić ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document