Plasma Treatment
Recently Published Documents


TOTAL DOCUMENTS

6116
(FIVE YEARS 2247)

H-INDEX

97
(FIVE YEARS 29)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 104
Author(s):  
Panagiotis Dimitrakellis ◽  
François Faubert ◽  
Maxime Wartel ◽  
Evangelos Gogolides ◽  
Stéphane Pellerin

We studied the epoxy polymer surface modification using air plasma treatment in a Gliding Arc (GA) plasma reactor and a pulsed Dielectric Barrier Discharge (DBD). We employed optical emission spectroscopy (OES) measurements to approximate the vibrational and rotational temperatures for both plasma sources, as well as surface temperature measurements with fiber optics and IR thermography to corelate with the corresponding hydrophilization of the epoxy material. Water contact angle measurements revealed a rapid hydrophilization for both plasma sources, with a slightly more pronounced effect for the air DBD treatment. Ageing studies revealed stable hydrophilicity, with water contact angle saturating at values lower than 50°, corresponding to a >50% decrease compared to the untreated epoxy polymer. ATR-FTIR spectroscopy studies showed an additional absorption band assigned to carbonyl group, with its peak intensity being higher for the DBD treated surfaces. The spectra were also correlated with the surface functionalization via the relative peak area ratio of carbonyl to oxirane and benzene related bands. According to SEM imaging, GA plasma treatment led to no apparent morphological change, contrary to DBD treatment, which resulted in nano-roughness formation. The enhanced surface oxidation as well as the nano-roughness formation on epoxy surface with the air DBD treatment were found to be responsible for the stable hydrophilization.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012028
Author(s):  
Chao Meng ◽  
Shoujing Yue ◽  
Lixin Xuan ◽  
Zhandong Ma ◽  
Jigang Wang ◽  
...  

Abstract The surface of quartz fiber/cyanate ester composite at meter working distance was activated by plasma treatment technology. Influence of plasma treatment parameters on surface contact angle of the composite was investigated, as well as changes of surface morphology, intrinsic performance and membrane-based bonding strength. Results showed that surface contact angle of the composite decreased significantly after plasma treatment with nitrogen and argon. Moreover, activation effect of argon plasma was better than that of nitrogen plasma. With the increase of voltage, surface contact angle of composite became smaller and activation effect was better. After plasma treatment, glass transition temperature (Tg) and bending strength of the composite did not change, and intrinsic property of the composite was not damaged. After plasma treatment, surface roughness and specific surface area of the composite increased, and membrane-based bonding strength of the composite with Al coating increased significantly.


2021 ◽  
Author(s):  
Michael James Simmonds ◽  
Thomas Schwarz-Selinger ◽  
Marlene Idy Patino ◽  
Matthew J Baldwin ◽  
Russell P Doerner ◽  
...  

Abstract Deuterium (D) plasma exposure during annealing of self-ion damaged tungsten (W) is shown to exhibit reduced defect recovery when compared to annealing without D plasma exposure. In these experiments, samples were first damaged with 20 MeV W ions. Next, samples were annealed either with or without simultaneous D2 plasma exposure. The simultaneous annealed samples were first decorated by D2 plasma at 383 K prior to ramping up to an annealing temperature of 473, 573, 673, or 773 K and held for 1 hour with concurrent plasma exposure. The vacuum annealed samples each had a corresponding temperature history but without D$_2$ plasma treatment. Finally, all samples were exposed to D2 plasma at 383 K to decorate any remaining defects. Nuclear reaction analysis (NRA) and thermal desorption spectroscopy (TDS) shows that the simultaneous plasma-exposed and annealed samples exhibited virtually no defect recovery at annealing temperatures of up to 673 K, and had higher D retention than found in the vacuum annealed samples. TDS results indicate that only the lowest detrapping energy defects recover at an 773~K anneal for the simultaneous plasma annealed samples, while the vacuum annealed samples showed defect recovery at all anneal temperatures. This experiment clearly demonstrates that D occupied defects can significantly reduce or eliminate defect annealing in W, and is consistent with the existence of synergistic plasma exposure/displacement damage effects in fusion-energy relevant plasma facing materials.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Wei-Sheng Liu ◽  
Chih-Hao Hsu ◽  
Yu Jiang ◽  
Yi-Chun Lai ◽  
Hsing-Chun Kuo

In this study, high-performance indium–gallium–zinc oxide thin-film transistors (IGZO TFTs) with a dual-gate (DG) structure were manufactured using plasma treatment and rapid thermal annealing (RTA). Atomic force microscopy measurements showed that the surface roughness decreased upon increasing the O2 ratio from 16% to 33% in the argon–oxygen plasma treatment mixture. Hall measurement results showed that both the thin-film resistivity and carrier Hall mobility of the Ar–O2 plasma–treated IGZO thin films increased with the reduction of the carrier concentration caused by the decrease in the oxygen vacancy density; this was also verified using X-ray photoelectron spectroscopy measurements. IGZO thin films treated with Ar–O2 plasma were used as channel layers for fabricating DG TFT devices. These DG IGZO TFT devices were subjected to RTA at 100 °C–300 °C for improving the device characteristics; the field-effect mobility, subthreshold swing, and ION/IOFF current ratio of the 33% O2 plasma–treated DG TFT devices improved to 58.8 cm2/V·s, 0.12 V/decade, and 5.46 × 108, respectively. Long-term device stability reliability tests of the DG IGZO TFTs revealed that the threshold voltage was highly stable.


Author(s):  
Raffaele Ciardiello ◽  
Domenico D’Angelo ◽  
Laura Cagna ◽  
Alessandro Croce ◽  
Davide Salvatore Paolino

Plasma treatment has been used in recent years to activate the surfaces of adhesive substrates and thus as an adhesion promoter between adhesive and substrates. The use of plasma treatments is widely adopted in the automotive industries especially for polymers that present low surface energy, such as polypropylene. In this work, polypropylene substrates used in the automotive industries have been treated with two different techniques: vacuum and atmospheric plasma. Then, polyurethane and methacrylate adhesives have been used to bond single lap joints (SLJs). Typically, these two adhesives cannot bond polypropylene substrates without surface treatments. An experimental plan has been designed to investigate the process parameters that can increase the functional polar groups (FPGs) maximizing the adhesion strength. Besides the types of plasma, two different gas carriers (air and nitrogen) and different treatment times have been investigated. The substrates, treated and not treated, have been assessed through scanning electron microscopy, energy-dispersive X-ray analysis, and Fourier-transform infrared spectroscopy to quantitatively assess the increment of FPGs after the different treatments. The experimental plan shows that the atmospheric plasma can improve the surface of the substrates by using a smaller time. Mechanical tests on SLJs show that methacrylate and polyurethane cannot bond polypropylene substrates without the plasma treatment. On the other hand, the treated substrates can form a strong bonding with the adhesive since all SLJs exhibit a substrate failure. Mechanical tests have been also carried out after three different aging cycles showing that the adopted plasma treatment is not affected by the aging cycles.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Fatemeh Faramarzi ◽  
Parisa Zafari ◽  
Mina Alimohammadi ◽  
Mohammadreza Moonesi ◽  
Alireza Rafiei ◽  
...  

Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.


2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Rudy Trejo-Tzab ◽  
Alejandro Avila-Ortega ◽  
Patricia Quintana-Owen ◽  
Ricardo Rangel ◽  
Mayra Angélica Álvarez-Lemus

In the present work, N-TiO2−x/Pt was synthesized using a homemade nitrogen plasma (AC) discharge system. The overall procedure use of low-power nitrogen plasma (100 watts) with 1 and 2 h of plasma discharge to successfully impregnate platinum nanoparticles on P25 titanium dioxide. The obtained samples were characterized using X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). The results reveal the incorporation of metallic Pt up to 2.9% on the surface of TiO2 by increasing the duration of plasma discharge by up to two hours with a constant power of 100 watts. Likewise, the incorporation of nitrogen atoms into a lattice crystal was also favored, confirming a direct relationship between the amount of Pt and nitrogen atoms introduced in TiO2 as a function of the duration of plasma treatment. By characterizing nanoparticles loaded on a N-TiO2−x/Pt surface, we show that joined platinum nanoparticles have two different patterns, and the boundary between these two regions coalesces. The results demonstrate that the use of nitrogen plasma to impregnate platinum nanoparticles on the surface of TiO2 to obtain N-TiO2−x/Pt allows wide and relevant physics and chemistry applications.


2021 ◽  
Vol 54 (4) ◽  
pp. 5-9
Author(s):  
Irina I. Morozova ◽  
Natalia V. Tikhonova ◽  
Yulia A. Timoshina ◽  
Emil F. Voznesensky

The article presents the results of a study on the functionalisation of synthetic textile materials with spherical activated carbon using an adhesive to create personal protective equipment based on Russian components. These materials are of particular relevance in the production of sorption and filtering personal protective equipment, which must have, along with high protective characteristics, high performance properties, vapour and air permeability. In the course of the work, the influence of the plasma of a capacitive high-frequency and low-pressure discharge on the modification of the base material was investigated. It has been proven that plasma treatment of polyester nonwoven material accelerates sorption processes, ensures uni-form coverage of fibres with a binder, which allows maintaining the material's air permeability. The results of studies of the material for the time of protective action on ammonia demonstrated the prospects for the development of Russian sorption-filtering textile material on a non-woven polyester base with a monolayer of granular activated carbon fixed on a polymer binder.


COVID ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-4
Author(s):  
Fatma Elrashdy ◽  
Elrashdy M. Redwan ◽  
Vladimir N. Uversky

Recently, it was reported that near-sourced COVID-19 convalescent plasma (CP) is more efficient than distantly sourced CP. What was left behind in this analysis is the investigation of the possible causes of mortality associated with the CP transfusion itself. Knowing this information is important for determining whether not receiving CP of near source is the main cause of high rate of death in the group of patients who received distantly sourced CP. We argue that the thrombotic and thromboembolic events may act as risk factors for adverse complications and death associated with CP transfusion. Therefore, they have to be considered and carefully accounted for in population studies as they can affect the CP safety profiles and change the interpretation of the cause of death in the studied groups.


Sign in / Sign up

Export Citation Format

Share Document