Femtosecond laser-induced periodic surface structures of copper: Experimental and modeling comparison

2019 ◽  
Vol 469 ◽  
pp. 904-910 ◽  
Author(s):  
Chin-Lun Chang ◽  
Chung-Wei Cheng ◽  
Jinn-Kuen Chen
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Iaroslav Gnilitskyi ◽  
Thibault J.-Y. Derrien ◽  
Yoann Levy ◽  
Nadezhda M. Bulgakova ◽  
Tomáš Mocek ◽  
...  

2019 ◽  
Vol 471 ◽  
pp. 516-520 ◽  
Author(s):  
Sohail A. Jalil ◽  
Jianjun Yang ◽  
Mohamed ElKabbash ◽  
Subhash C. Singh ◽  
Chunlei Guo

2012 ◽  
Vol 31 (1) ◽  
pp. 29-36 ◽  
Author(s):  
M. Trtica ◽  
D. Batani ◽  
R. Redaelli ◽  
J. Limpouch ◽  
V. Kmetik ◽  
...  

AbstractThe response of titanium surface irradiated with high intensity (1013 – 1015 W/cm2) Ti:sapphire laser was studied in vacuum. Most of the reported investigations were conducted with nano- to femtosecond lasers in gas atmospheres while the studies of titanium surface interacting with femtosecond laser in vacuum are scarce. The laser employed in our experiment was operating at 800 nm wavelength and pulse duration of 60 fs in single pulse regime. The observed surface changes and phenomena are (1) creation of craters, (2) formation of periodic surface structures at the reduced intensity, and (3) occurrence of plasma in front the target. Since microstructuring of titanium is very interesting in many areas (industry, medicine), it can be concluded from this study that the reported laser intensities can effectively be applied for micromachining of the titanium surface (increasing the roughness, formation of parallel periodic surface structures etc.).


Author(s):  
D.V. Shuleiko ◽  
M.N. Martyshov ◽  
S.V. Zabotnov ◽  
D.E. Presnov ◽  
A.G. Kazanskii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document