titanium surface
Recently Published Documents


TOTAL DOCUMENTS

1129
(FIVE YEARS 253)

H-INDEX

54
(FIVE YEARS 8)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 51
Author(s):  
Takahiro Shuto ◽  
Yuichi Mine ◽  
Seicho Makihira ◽  
Hiroki Nikawa ◽  
Takanori Wachi ◽  
...  

Fluoride and abrasives in toothpastes may cause corrosion and deterioration of the titanium used for implants and other prostheses. The purpose of this study was to investigate how the presence or absence and types of fluoride and abrasives affected the titanium surface texture. Brushing with toothpastes was performed on pure-titanium discs using an abrasive testing machine. Unprocessed titanium discs without brushing were used as control samples. Surface roughness, color, and gloss of titanium were measured and the differences compared with the control were analyzed. Additionally, titanium surfaces and abrasives in toothpastes were observed using a scanning electron microscope to compare the surface texture of each sample. Some toothpastes (abrasive+) significantly increased the difference in surface roughness, color, and gloss, compared with ultrapure water. Toothpaste (fluoride+/abrasive+) that had many polygonal abrasive particles led to the largest color differences and exhibited notable scratches and a larger number of contaminant- or corrosion-like black spots. In contrast, brushing with toothpaste without fluoride or abrasives (fluoride−/abrasive−) caused little change to the titanium surface. These results suggest that both fluoride and abrasives in toothpaste used for brushing may be factors that affect surface texture and corrosion resistance of titanium.


2021 ◽  
Vol 9 (6) ◽  
pp. 449-463
Author(s):  
Vyacheslav Ivanov ◽  
Mikhail Konyzhev ◽  
Tatyana Kamolova ◽  
Anna Dorofeyuk

The propagation and structure of a microplasma discharge initiated in vacuum by a pulsed plasma flow with a density of 1013 cm–3 on the surface of a titanium sample covered with a thin continuous dielectric titanium oxide film with a shickness of 2–6 nm were studied experimentally when the electric current of the discharge changes from 50 A to 400 A. It was found that the microplasma discharge glow visually at the macroscale has a branched structure of the dendrite type, which at the microscale consists of a large number of brightly glowing “point” formations – cathode spots localized on the metal surface. The resulting erosion structure on the titanium surface is visually “identical” to the structure of the discharge glow and consists of a large number of separate non-overlapping microcraters with characteristic sizes from 0.1–3 μm, which are formed at the sites of localization of cathode spots at distances of up to 20 μm from each other. It was found that the propagation of a single microplasma discharge over the titanium surface covered with a thin oxide film a thickness of 2–6 nm occurs at an average velocity of 15–70 m/s when the amplitude of the discharge electric current changes in the range of 50–400 A. In this case, the microplasma discharge propagation on the microscale has a “jumping” character: the plasma of “motionless” burning cathode spots, during their lifetime 1 μs, initiates the excitation of new microdischarges, which create new cathode spots at localization distances of 1–20 μm from the primary cathode spots. This process repeated many times during a microplasma dis- charge pulse with a duration from 0.1 ms to 20 ms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260760
Author(s):  
Bo-Hyun Park ◽  
Eui-Seung Jeong ◽  
Sujin Lee ◽  
Jun-Hyeog Jang

Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.


2021 ◽  
Vol 11 (24) ◽  
pp. 11915
Author(s):  
Simonetta D’Ercole ◽  
Carlo Mangano ◽  
Luigina Cellini ◽  
Silvia Di Lodovico ◽  
Cigdem Atalayin Ozkaya ◽  
...  

The topography of implant surfaces influences the interaction relationship between material and bacteria. The aim of this work was to characterize a novel 3D titanium surface, produced using Selective Laser Sintering (SLS), and to compare the bacterial interaction with machined and double acid etching (DAE) discs. The surface was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Energy Dispersive X-ray Spectrometry (EDX). The wettability was measured using the sessile method. The microbiological investigation consisted in the cultivation of a bacterial pioneer, Streptococcus oralis, on titanium surfaces, previously covered by human saliva in order to form the acquired pellicle. Then, colony forming units (CFUs), biofilm biomass quantification, analyses of viable and dead cells, and SEM observation were determined after 24 h of S. oralis biofilm formation on the different discs. A significantly higher nano-roughness with respect to the other two groups characterized the novel 3D surface, but the wettability was similar to that of machined samples. The microbiological assays demonstrated that the 3D discs reported significantly lower values of CFUs and biofilm biomass with respect to machined surfaces; however, no significant differences were found with the DAE surfaces. The live/dead staining confirmed the lower percentage of living cells on DAE and 3D surfaces compared with the machined. This novel 3D surface produced by SLS presented a high antiadhesive and antibiofilm activity.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7686
Author(s):  
Khaled Mukaddam ◽  
Monika Astasov-Frauenhoffer ◽  
Elizaveta Fasler-Kan ◽  
Laurent Marot ◽  
Marcin Kisiel ◽  
...  

Objectives: The transgingival part of titanium implants is either machined or polished. Cell-surface interactions as a result of nano-modified surfaces could help gingival fibroblast adhesion and support antibacterial properties by means of the physico-mechanical aspects of the surfaces. The aim of the present study was to determine how a nanocavity titanium surface affects the viability and adhesion of human gingival fibroblasts (HGF-1). Additionally, its properties against Porphyromonas gingivalis were tested. Material and Methods: Two different specimens were evaluated: commercially available machined titanium discs (MD) and nanostructured discs (ND). To obtain ND, machined titanium discs with a diameter of 15 mm were etched with a 1:1 mixture of 98% H2SO4 and 30% H2O2 (piranha etching) for 5 h at room temperature. Surface topography characterization was performed via scanning electron microscopy (SEM) and atomic force microscopy (AFM). Samples were exposed to HGF-1 to assess the effect on cell viability and adhesion, which were compared between the two groups by means of MTT assay, immunofluorescence and flow cytometry. After incubation with P. gingivalis, antibacterial properties of MD and ND were determined by conventional culturing, live/dead staining and SEM. Results: The present study successfully created a nanostructured surface on commercially available machined titanium discs. The etching process created cavities with a 10–20 nm edge-to-edge diameter. MD and ND show similar adhesion forces equal to about 10–30 nN. The achieved nanostructuration reduced the cell alignment along machining structures and did not negatively affect the proliferation of gingival fibroblasts when compared to MD. No differences in the expression levels of both actin and vinculin proteins, after incubation on MD or ND, were observed. However, the novel ND surface failed to show antibacterial effects against P. gingivalis. Conclusion: Antibacterial effects against P. gingivalis cannot be achieved with nanocavities within a range of 10–20 nm and based on the piranha etching procedure. The proliferation of HGF-1 and the expression levels and localization of the structural proteins actin and vinculin were not influenced by the surface nanostructuration. Further studies on the strength of the gingival cell adhesion should be performed in the future. Clinical relevance: Since osseointegration is well investigated, mucointegration is an important part of future research and developments. Little is known about how nanostructures on the machined transgingival part of an implant could possibly influence the surrounding tissue. Targeting titanium surfaces with improved antimicrobial properties requires extensive preclinical basic research to gain clinical relevance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3306
Author(s):  
Yuzhu He ◽  
Yuanyuan Li ◽  
Enjun Zuo ◽  
Songling Chai ◽  
Xiang Ren ◽  
...  

For the benefit of antibacterial Ti on orthopedic and dental implants, a bioactive coating (Pac@PLGA MS/HA coated Ti) was deposited on the surface of pure titanium (Ti), which included two layers: an acid–alkali heat pretreated biomimetic mineralization layer and an electrosprayed Poly (D,L-lactide-co- glycolic acid) (PLGA) microsphere layer as a sustained-release system. Hydroxyapatite (HA) in mineralization layer was primarily prepared on the Ti followed by the antibacterial coating of Pac-525 loaded by PLGA microspheres. After observing the antimicrobial peptides distributed uniformly on the titanium surface, the release assay showed that the release of Pac-525 from Pac@PLGA MS/HA coated Ti provided a large initial burst followed by a slow release at a flat rate. Pac@PLGA MS/HA coated Ti exhibited a strong cytotoxicity to both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). In addition, Pac@PLGA MS/HA coated Ti did not affect the growth and adhesion of the osteoblast-like cell line, MC3T3-E1. These data suggested that a bionic mineralized composite coating with long-term antimicrobial activity was successfully prepared.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peijun Huang ◽  
Xue Chen ◽  
Zhongren Chen ◽  
Min Chen ◽  
Jinzhi He ◽  
...  

Abstract Background Erbium yttrium–aluminum–garnet (Er:YAG) laser have been shown to be suitable for decontamination of titanium surfaces at a wide range of energy settings, however, high intensity of laser irradiation destroy titanium surface and low intensity cannot remove enough microbial biofilm. The aim of this study was to investigate the optimal energy setting of Er:YAG laser for decontamination of sandblasted/acid-etched (SLA) and hydroxyapatite (HA) titanium surfaces. Material and methods After supragingival biofilm construction in vivo, SLA and HA titanium discs were divided into three groups: blank control (BC, clean discs), experimental control (EC, contaminated discs) and experimental groups (EP, contaminated discs irradiated by Er:YAG laser at 40, 70, and 100 mJ/pulse). Scanning electron microscopy (SEM), live/dead bacterial fluorescent detection, and colony counting assay were used to detect the efficacy of laser decontamination. To investigate the effect of laser decontamination on titanium surface biocompatibility, MC3T3-E1 cell adhesion and proliferation activity were examined by SEM and CCK-8 assay. Results Er:YAG laser irradiation at 100 mJ/pulse removed 84.1% of bacteria from SLA titanium surface; laser irradiation at 70 and 100 mJ/pulse removed 76.4% and 77.85% of bacteria from HA titanium surface respectively. Laser irradiation improved MC3T3-E1 cell adhesion on both titanium surfaces. For SLA titanium discs, 100 mJ/pulse group displayed excellent cellular proliferation activity higher than that in BC group (P < 0.01). For HA titanium discs, 70 mJ/pulse group showed the highest activity comparable to BC group (P > 0.05). Conclusions With regards to efficient microbial biofilm decontamination and biocompatibility maintenance, Er:YAG laser at 100 mJ/pulse and 70 mJ/pulse are considered as the optimal energy settings for SLA titanium and HA titanium surface respectively. This study provides theoretical basis for the clinical application of Er:YAG laser in the treatment of peri-implantitis.


Materialia ◽  
2021 ◽  
pp. 101302
Author(s):  
Andrea Cecilia CURA ◽  
Jesica Itatí ZUCHUAT ◽  
Liliana Teresita TRIBBIA ◽  
Irene Rita Eloisa TARAVINI ◽  
Oscar Alfredo DECCO

Sign in / Sign up

Export Citation Format

Share Document