Preparation of ultra-thin TiO2 shell by peroxo titanium complex (PTC) solution-based green surface modification, and photocatalytic activity of homo-core/shell TiO2

2021 ◽  
Vol 540 ◽  
pp. 148399
Author(s):  
Jinho Lee ◽  
Jiyong Hwang ◽  
Hyunsu Park ◽  
Tohru Sekino ◽  
Woo-Byoung Kim
2012 ◽  
Vol 39 (9) ◽  
pp. 3981-3989 ◽  
Author(s):  
Min Mo ◽  
Jiansheng Tang ◽  
Min Zheng ◽  
Qi Lu ◽  
Yao Chen ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 358 ◽  
Author(s):  
Muhammad Zubair ◽  
Ingeborg-Helene Svenum ◽  
Magnus Rønning ◽  
Jia Yang

Aiming to achieve enhanced photocatalytic activity and stability toward the generation of H2 from water, we have synthesized noble metal-free core-shell nanoparticles of graphene (G)-wrapped CdS and TiO2 (CdS@G@TiO2) by a facile hydrothermal method. The interlayer thickness of G between the CdS core and TiO2 shell is optimized by varying the amount of graphene quantum dots (GQD) during the synthesis procedure. The most optimized sample, i.e., CdS@50G@TiO2 generated 1510 µmole g−1 h−1 of H2 (apparent quantum efficiency (AQE) = 5.78%) from water under simulated solar light with air mass 1.5 global (AM 1.5G) condition which is ~2.7 times and ~2.2 time superior to pure TiO2 and pure CdS respectively, along with a stable generation of H2 during 40 h of continuous operation. The increased photocatalytic activity and stability of the CdS@50G@TiO2 sample are attributed to the enhanced visible light absorption and efficient charge separation and transfer between the CdS and TiO2 due to incorporation of graphene between the CdS core and TiO2 shell, which was also confirmed by UV-vis, photoelectrochemical and valence band XPS measurements.


RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 2733-2743
Author(s):  
Parisa Talebi ◽  
Harishchandra Singh ◽  
Ekta Rani ◽  
Marko Huttula ◽  
Wei Cao

Surface plasmonic resonance enabled Ni@NiO/NiCO3 core–shell nanostructures as promising photocatalysts for hydrogen evolution under visible light.


RSC Advances ◽  
2015 ◽  
Vol 5 (87) ◽  
pp. 71035-71045 ◽  
Author(s):  
Shuquan Huang ◽  
Yuanguo Xu ◽  
Zhigang Chen ◽  
Meng Xie ◽  
Hui Xu ◽  
...  

A core–shell structured Ag/AgBr@Fe2O3 composite was prepared successfully. It has magnetic properties, highly efficient photocatalytic activity and antibacterial ability.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Min Liu ◽  
Hongmei Li ◽  
Yangsu Zeng

Tungsten trioxide (WO3) was surface modified with Cu(II) nanoclusters and titanium dioxide (TiO2) nanopowders by using a simple impregnation method followed by a physical combining method. The obtained nanocomposites were studied by scanning electron microscope, X-ray photoelectron spectroscopy spectra, UV-visible light spectra, and photoluminescence, respectively. Although the photocatalytic activity of WO3was negligible under visible light irradiation, the visible light photocatalytic activity of WO3was drastically enhanced by surface modification of Cu(II) nanoclusters and TiO2nanopowders. The enhanced photocatalytic activity is due to the efficient charge separation by TiO2and Cu(II) nanoclusters functioning as cocatalysts on the surface. Thus, this simple strategy provides a facile route to prepare efficient visible-light-active photocatalysts for practical application.


Sign in / Sign up

Export Citation Format

Share Document