cds nanoparticles
Recently Published Documents


TOTAL DOCUMENTS

1304
(FIVE YEARS 206)

H-INDEX

66
(FIVE YEARS 10)

2022 ◽  
Vol 34 (2) ◽  
pp. 331-341
Author(s):  
Gunjan Chauhan ◽  
Manjeet Sharma

Present study reports the simple and cost effective thermolytic method for the synthesis of cobalt sulphide nanoparticles (CoS NPs). The PXRD spectrum of cobalt sulphide (CdS) nanoparticles exhibited four peaks indexed to (100), (101), (102) and (110) crystal planes. The average particle size observed from DLS and PXRD was in the range 4.81-12.20 nm. A blue shift in band gap was observed from UV-visible spectra. The FESEM and TEM studies revealed that cobalt sulfide nanoparticles are of cubic and rectangle shapes. FTIR spectra of hexadecylamine (HDA) capped CoS NPs exhibited ν(N-H) absorption around 3350-3240 cm–1. The stretching frequency due to ν(Co-S) appeared in the region 334-332 cm–1. Proton NMR (1H) spectra of CoS NPs showed signals at nearly same positions as in case of capping agent, suggesting its capping nature. ESI-MS analyses of cobalt sulphide nanoparticles displayed peak at m/z = 124.93 corresponding to the [CoS2]+ ion. Thermogravimetric curves showed single step decomposition corresponding to 84.28% weight loss and 15.72% as final residue due to cobalt oxide. The degradation rate of rhodamine B and malachite green dyes after irradiating with sunlight showed 92-94% degradation while irradiated with UV-light of 4.8 eV show much slower degradation rate.


2021 ◽  
Author(s):  
Chan Kok Sheng ◽  
◽  
Yousef Mohammad Alrababah ◽  

The present research demonstrates a detailed discussion for the effect of annealing temperature on the structural transformation and surface morphology of the CdS nanoparticles synthesized using the precipitation method without surfactant in KOH alkaline medium. The annealing temperature used was in the range of 160 – 480 oC. The samples structural, functional group and morphological properties were investigated by using XRD, FTIR and SEM techniques. XRD analysis reveals that the CdS has gradually been transformed from the pure cubic to hexagonal polycrystalline structure as well as improved crystallinity upon increasing the temperature. Besides, the parameters of average crystallite size and dislocation density were calculated using the established Debye- Scherrer equation. The average crystallite size was in nano-dimension and increases gradually with temperature. The FTIR spectra indicate that the characteristic vibration band of CdS emerged in the lower wavenumber region of 650 and 500 cm-1, and the band becomes stronger as the temperature rises. Also, the SEM images demonstrate that the CdS exhibits uniform spherical morphology and the particle size grows larger at elevated temperatures. The improved crystallinity and structural properties tuning ability against temperature allows beneficial optical applications as solar cells, photocatalysts, non-linear optics, light emitting diodes and optoelectronic devices.


2021 ◽  
Vol 119 (25) ◽  
pp. 253902
Author(s):  
Tao Chen ◽  
Wanhu Chen ◽  
Zemin Zhang ◽  
Xiao Jiang ◽  
Muhammad Sufyan Javed ◽  
...  
Keyword(s):  

2021 ◽  
Vol 21 (12) ◽  
pp. 5835-5845
Author(s):  
Ranjith Balu ◽  
Arivuoli Dakshanamoorthy

Supercapacitor with high specific capacity is desirable for various energy storage and high powerdensity applications. Though Graphene has been the preferred material for high current density, nanocomposites have been attempted to increase the specific capacitance. Hydrothermal synthesis of cadmium sulfide/graphene (CdS/G) nanocomposite with CdS nanoparticles anchored/decorated over the graphene sheets is reported. The structural studies reveal the hexagonal phase of the prepared materials. The specific surface area (BET) and porosity is found to increase upon nanocomposite formation. The electrochemical characteristics such as cyclic voltammetry (CV), GCD and EIS of the CdS/G nanocomposite have been investigated. The capacitance of CdS/G nanocomposite almost doubled to 248 Fg−1 indicating the enhanced performance of the nanocomposite system and in addition it also showed excellent cycling stability of 74.8 percent after 1000 cycles. The supercapacitor investigated retained the initial energy density after charge-discharge, at 0.5 A/g for 1000 cycles. The graphene nanosheets increased the specific surface area and interfacial electron transfer of the composite material. It enhances the specific capacitance and cyclic stability of the supercapacitor device.


2021 ◽  
Vol 21 (12) ◽  
pp. 5987-5992
Author(s):  
Xiaobo Nie ◽  
Yanming Chen

Cadmium sulfide nanoparticles (CdS NPs) were synthesized by using cadmium acetate and thiourea as precursors and sodium oleate as the surfactant under different cadmium acetate concentrations in anhydrous ethanol. Cadmium (Cd) precursor concentration greatly affected the nucleation-growth of CdS NPs. In extremely dilute solution with a Cd precursor concentration of 0.1 mmol · L−1, an overlapped nucleation and growth corresponding to two pronounced absorption peaks at 310 nm and 350 nm, respectively, was observed. Unparalleled nucleation was dominant within very long reaction time until 10 hours. The nuclei and the resulting magic-sized CdS NPs may be used as seeds to prepare size and shape controllable nanoparticles. On the contrary, at a high Cd precursor concentration (5 mmol · L−1), nucleation and growth were separated. Only one first exciton absorption peak standing for the growth of regular CdS NPs appeared at 440 nm. Many techniques including transmission electron microscopy (TEM), X-ray powder diffraction (XRD), ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) spectrometers were applied to characterize the morphology, crystalline structure, and optical properties of CdS NPs.


2021 ◽  
pp. 131602
Author(s):  
Sasireka Velusamy ◽  
Anurag Roy ◽  
Senthilarasu Sundaram ◽  
Tapas K. Mallick

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qiang Ding ◽  
Yadi Liu ◽  
Guipeng Hu ◽  
Liang Guo ◽  
Cong Gao ◽  
...  

AbstractMicrobial organelles are a promising model to promote cellular functions for the production of high-value chemicals. However, the concentrations of enzymes and nanoparticles are limited by the contact surface in single Escherichia coli cells. Herein, the definition of contact surface is to improve the amylase and CdS nanoparticles concentration for enhancing the substrate starch and cofactor NADH utilization. In this study, two biofilm-based strategies were developed to improve the contact surface for the production of shikimate and L-malate. First, the contact surface of E. coli was improved by amylase self-assembly with a blue light-inducible biofilm-based SpyTag/SpyCatcher system. This system increased the glucose concentration by 20.7% and the starch-based shikimate titer to 50.96 g L−1, which showed the highest titer with starch as substrate. Then, the contact surface of E. coli was improved using a biofilm-based CdS-biohybrid system by light-driven system, which improved the NADH concentration by 83.3% and increased the NADH-dependent L-malate titer to 45.93 g L−1. Thus, the biofilm-based strategies can regulate cellular functions to increase the efficiency of microbial cell factories based on the optogenetics, light-driven, and metabolic engineering. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document