Synthesis of Fe3C@C Core−shell Catalysts with Controlled Shell Composition for Robust Oxygen Evolution Reaction

2021 ◽  
pp. 149445
Author(s):  
Syed Asad Abbas ◽  
Ahyeon Ma ◽  
Dongho Seo ◽  
Haeun Jung ◽  
Yun Ji Lim ◽  
...  
Author(s):  
Min Jiang ◽  
Wei Fan ◽  
Anquan Zhu ◽  
Pengfei Tan ◽  
Jianping Xie ◽  
...  

This work employs bacteria as precursors and induces a cost-effective biosorption strategy to obtain Fe2P@carbon nanoparticles decorated on N and P co-doped carbon (Fe2P@CNPs/NPC) materials.


2021 ◽  
Author(s):  
Xiaoping Ma ◽  
Lili Deng ◽  
Manting Lu ◽  
Yi He ◽  
Shuai Zou ◽  
...  

Abstract Although researches on non-noble metal electrocatalysts have been made some progress recently, their performance in proton exchange membrane water electrolyzer (PEMWE) is still incomparable to that of noble-metal-based catalysts. Therefore, it is a more practical way to improve the utilization of precious metals in electrocatalysts for oxygen evolution reaction (OER) in the acidic medium. Herein, nanostructured IrCo@IrCoOx core-shell electrocatalysts composed of IrCo alloy core and IrCoOx shell were synthesized through a simple colloidally synthesis and calcination method. As expected, the hybrid IrCo-200 NPs with petal-like morphology show the best OER activities in acidic electrolytes. They deliver lower overpotential and better electrocatalytic kinetics than pristine IrCo alloy and commercial Ir/C, reaching a low overpotential (j = 10 mA/cm2) of 259 mV (vs. RHE) and a Tafel slope of 59 mV dec−1. The IrCo-200 NPs displayed robust durability with life time of about 55 h in acidic solution under a large current density of 50 mA/cm2. The enhanced electrocatalytic activity may be associated with the unique metal/amorphous metal oxide core-shell heterostructure, allowing the improved charge transferability. Moreover, the *OH-rich amorphous shell functions as the active site for OER and prevents the further dissolution of the metallic core and thus ensures high stability.


2019 ◽  
Vol 469 ◽  
pp. 731-738 ◽  
Author(s):  
Jiaxin Wang ◽  
Wenchao Zhang ◽  
Zilong Zheng ◽  
Jingping Liu ◽  
Chunpei Yu ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (70) ◽  
pp. 40811-40818 ◽  
Author(s):  
Xiaofang Zhang ◽  
Aixian Shan ◽  
Sibin Duan ◽  
Haofei Zhao ◽  
Rongming Wang ◽  
...  

Au@Co2P core/shell nanoparticles were designed and prepared to improve the oxygen evolution reaction performance.


2017 ◽  
Vol 26 (6) ◽  
pp. 1203-1209 ◽  
Author(s):  
Shengjue Deng ◽  
Shenghui Shen ◽  
Yu Zhong ◽  
Kaili Zhang ◽  
Jianbo Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document