Hole injection of quantum dot light-emitting diodes facilitated by multilayered hole transport layer

2021 ◽  
Vol 558 ◽  
pp. 149944
Author(s):  
Jeong Ha Hwang ◽  
Junmo Kim ◽  
Byong Jae Kim ◽  
Myeongjin Park ◽  
Yong Woo Kwon ◽  
...  
2021 ◽  
Vol 245 ◽  
pp. 03021
Author(s):  
Ronghong Zheng ◽  
Dong Huang ◽  
Dongyang Shen ◽  
Chengzhao Luo ◽  
Yu Chen

Perovskite quantum dots have been widely used in light-emitting diodes (LEDs) because of their adjustable color, high quantum yield and easy solution processing. Furthermore, matching energy levels of device plays a profound role in the resultant LEDs. In this study, a polymeric material, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4’-(N-(pbutylphenyl))diphenylamine)] (TFB), is introduced between the quantum dot emission layer and the hole injection layer PEDOT:PSS, which not only prevents the fluorescence quenching caused by the direct contact between the perovskite layer and the hole injection layer, but also reduces hole injection barrier, both being beneficial to the device performance. The optimal thickness of TFB has been obtained by adjusting the rotational speed and precursor solution concentration during spin coating. The optimized quantum dots LED has a switching on voltage of about 2.2 V, a maximum brightness of 4300 cd/m2, a maximum external quantum efficiency of 0.15%, and a maximum current density of 0.54 cd/A.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiangtian Xiao ◽  
Kai Wang ◽  
Taikang Ye ◽  
Rui Cai ◽  
Zhenwei Ren ◽  
...  

Abstract Enhanced hole injection is essential to achieve high performance in perovskite light-emitting diodes (LEDs). Here, a strategy is introduced to enhance hole injection by an electric dipole layer. Hopping theory demonstrates electric dipoles between hole injection layer and hole transport layer can enhance hole injection significantly. MoO3 is then chosen as the electric dipole layer between PEDOT:PSS (hole injection layer) and PVK (hole transport layer) to generate electric dipoles due to its deep conduction band level. Theoretical results demonstrate that strong electric fields are produced for efficient hole injection, and recombination rate is substantially increased. Capacitance-voltage analyses further prove efficient hole injection by introducing the electric dipole layer. Based on the proposed electric dipole layer structure, perovskite LEDs achieve a high current efficiency of 72.7 cd A−1, indicating that electric dipole layers are a feasible approach to enhance perovskite LEDs performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (76) ◽  
pp. 72462-72470 ◽  
Author(s):  
Jingling Li ◽  
Hu Jin ◽  
Kelai Wang ◽  
Dehui Xie ◽  
Dehua Xu ◽  
...  

In this work, all-solution processed, multi-layer yellow QLEDs, consisting of a hole transport layer of poly(9-vinylcarbazole), emissive layer of ligand exchanged CuInS2/ZnS QDs, and electron transport layer of ZnO nanoparticles, are fabricated.


2016 ◽  
Vol 24 (23) ◽  
pp. 25955 ◽  
Author(s):  
Qianqian Huang ◽  
Jiangyong Pan ◽  
Yuning Zhang ◽  
Jing Chen ◽  
Zhi Tao ◽  
...  

2016 ◽  
Vol 26 (5) ◽  
pp. 503-509 ◽  
Author(s):  
Jiahui Li ◽  
Yuanlong Shao ◽  
Xuecheng Chen ◽  
Hongzhi Wang ◽  
Yaogang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document