Low-pressure gas atomization of aluminum through a Venturi nozzle

2020 ◽  
Vol 31 (4) ◽  
pp. 1720-1727
Author(s):  
Michail Tsirlis ◽  
Nikolaos Michailidis
Author(s):  
L.H. Bolz ◽  
D.H. Reneker

The attack, on the surface of a polymer, by the atomic, molecular and ionic species that are created in a low pressure electrical discharge in a gas is interesting because: 1) significant interior morphological features may be revealed, 2) dielectric breakdown of polymeric insulation on high voltage power distribution lines involves the attack on the polymer of such species created in a corona discharge, 3) adhesive bonds formed between polymer surfaces subjected to such SDecies are much stronger than bonds between untreated surfaces, 4) the chemical modification of the surface creates a reactive surface to which a thin layer of another polymer may be bonded by glow discharge polymerization.


Author(s):  
Gert Ehrlich

The field ion microscope, devised by Erwin Muller in the 1950's, was the first instrument to depict the structure of surfaces in atomic detail. An FIM image of a (111) plane of tungsten (Fig.l) is typical of what can be done by this microscope: for this small plane, every atom, at a separation of 4.48Å from its neighbors in the plane, is revealed. The image of the plane is highly enlarged, as it is projected on a phosphor screen with a radius of curvature more than a million times that of the sample. Müller achieved the resolution necessary to reveal individual atoms by imaging with ions, accommodated to the object at a low temperature. The ions are created at the sample surface by ionization of an inert image gas (usually helium), present at a low pressure (< 1 mTorr). at fields on the order of 4V/Å.


Author(s):  
S. Wisutmethangoon ◽  
T. F. Kelly ◽  
J.E. Flinn

Vacancies are introduced into the crystal phase during quenching of rapid solidified materials. Cavity formation occurs because of the coalescence of the vacancies into a cluster. However, because of the high mobility of vacancies at high temperature, most of them will diffuse back into the liquid phase, and some will be lost to defects such as dislocations. Oxygen is known to stabilize cavities by decreasing the surface energy through a chemisorption process. These stabilized cavities, furthermore, act as effective nucleation sites for precipitates to form during aging. Four different types of powders with different oxygen contents were prepared by gas atomization processing. The atomized powders were then consolidated by hot extrusion at 900 °C with an extrusion ratio 10,5:1. After consolidation, specimens were heat treated at 1000 °C for 1 hr followed by water quenching. Finally, the specimens were aged at 600 °C for about 800 hrs. TEM samples were prepared from the gripends of tensile specimens of both unaged and aged alloys.


Nature ◽  
2005 ◽  
Author(s):  
Philip Ball
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document