An experimental study on a horizontal-vertical pneumatic conveying system using oscillatory flow

2020 ◽  
Vol 31 (6) ◽  
pp. 2285-2292
Author(s):  
Fei Yan ◽  
Xin Li ◽  
Rui Zhu ◽  
Chunsheng Luo ◽  
Jing Xia
1998 ◽  
Vol 120 (1) ◽  
pp. 200-203 ◽  
Author(s):  
Hui Li ◽  
Yuji Tomita

A swirling flow is adopted for a vertical pneumatic conveying system to reduce conveying velocity, pipe wear, and particle degradation. An experimental study has addressed the characteristics of swirling flow pneumatic conveying (SFPC) for the total pressure drop, solid flow patterns, power consumption, and additional pressure drop. Polystyrene, polyethylene, and polyvinyl particles with mean diameters of 1.7, 3.1, and 4.3 mm, respectively, were transported as test particles in a vertical pipeline 12.2 m in height with an inside diameter of 80 mm. The initial swirl number was varied from 0.38 to 0.94, the mean air velocity was varied from 9 to 23 m/s, and the mass flow rate of the solids was varied from 0.3 to 1.25 kg/s. The minimum and critical air velocities decreased as much as 20 and 13 percent, respectively, when using SFPC. The total pressure drop and power consumption of SFPC are close to those of axial flow pneumatic conveying in the low air velocity range.


1996 ◽  
Vol 118 (3) ◽  
pp. 526-530 ◽  
Author(s):  
Hui Li ◽  
Yuji Tomita

In order to reduce power consumption, pipe wear and particle degradation in pneumatic conveying system, a swirling flow pneumatic conveying (SFPC) system is proposed in this paper, and an experimental study focuses on the SFPC system in a horizontal pipeline in terms of the overall pressure drop, solid flow patterns, power consumption and the additional pressure drop. Polystyrene, polyethylene, and polyvinyl pellets with mean diameters of 1.7, 3.1, and 4.3 mm, respectively, were transported as test particles in a horizontal pipeline of 13 m length and 80 mm inside diameter. The initial swirl number was varied from 0.58 to 1.12, the mean air velocity from 9 m/s to 24 m/s, and the solid mass flow rate from 0.43 kg/s to 1.17 kg/s. It is found that in the lower gas velocity range, the pressure drop, the power consumption and additional pressure drop for SFPC were lower than those for axial flow pneumatic conveying. The critical and minimum air velocities were decreased by SFPC, the maximum reduction rates being 13 and 17 percent, respectively. The fluctuation of wall static pressure for SFPC was also decreased.


Sign in / Sign up

Export Citation Format

Share Document