scholarly journals Consensus modeling with cost chance constraint under uncertainty opinions

2018 ◽  
Vol 67 ◽  
pp. 721-727 ◽  
Author(s):  
Xiao Tan ◽  
Zaiwu Gong ◽  
Francisco Chiclana ◽  
Ning Zhang
2020 ◽  
Vol 26 (33) ◽  
pp. 4195-4205
Author(s):  
Xiaoyu Ding ◽  
Chen Cui ◽  
Dingyan Wang ◽  
Jihui Zhao ◽  
Mingyue Zheng ◽  
...  

Background: Enhancing a compound’s biological activity is the central task for lead optimization in small molecules drug discovery. However, it is laborious to perform many iterative rounds of compound synthesis and bioactivity tests. To address the issue, it is highly demanding to develop high quality in silico bioactivity prediction approaches, to prioritize such more active compound derivatives and reduce the trial-and-error process. Methods: Two kinds of bioactivity prediction models based on a large-scale structure-activity relationship (SAR) database were constructed. The first one is based on the similarity of substituents and realized by matched molecular pair analysis, including SA, SA_BR, SR, and SR_BR. The second one is based on SAR transferability and realized by matched molecular series analysis, including Single MMS pair, Full MMS series, and Multi single MMS pairs. Moreover, we also defined the application domain of models by using the distance-based threshold. Results: Among seven individual models, Multi single MMS pairs bioactivity prediction model showed the best performance (R2 = 0.828, MAE = 0.406, RMSE = 0.591), and the baseline model (SA) produced the most lower prediction accuracy (R2 = 0.798, MAE = 0.446, RMSE = 0.637). The predictive accuracy could further be improved by consensus modeling (R2 = 0.842, MAE = 0.397 and RMSE = 0.563). Conclusion: An accurate prediction model for bioactivity was built with a consensus method, which was superior to all individual models. Our model should be a valuable tool for lead optimization.


2021 ◽  
Author(s):  
Paolo Scarabaggio ◽  
Raffaele Carli ◽  
Graziana Cavone ◽  
Nicola Epicoco ◽  
Mariagrazia Dotoli

This paper proposes a stochastic non-linear model predictive controller to support policy-makers in determining robust optimal strategies to tackle the COVID-19 secondary waves. First, a time-varying <i>SIRCQTHE </i>epidemiological model (considering Susceptible, Infected, Removed, Contagious, Quarantined, Threatened, Healed, and Extinct compartments of individuals) is defined to get reliable predictions on the pandemic dynamics on a regional basis. A stochastic Model Predictive Control problem is then formulated to select the necessary control actions to minimize the arising socio-economic costs. <br>In particular, considering the unavoidable uncertainty characterizing this decision-making process, we ensure that the capacity of the network of regional healthcare systems is not violated in accordance with a chance constraint approach.<br>Furthermore, since the infection rate depends on people’s mobility, differently from the related literature, we model the control actions as interventions affecting the mobility levels associated to different socio-economic categories.<br><div>The effectiveness of the presented method in properly supporting the definition of diversified regional strategies for tackling the COVID-19 spread is tested on the network of Italian regions using real data from the Italian Civil Protection Department. However, provided the availability of reliable data, the proposed approach can be easily extended to cope with other countries' characteristics and different levels of the spatial scale.</div><div><br></div><div>Preprint of paper submitted to IEEE Transactions on Automation Science and Engineering (<em>T-ASE</em>)</div>


2019 ◽  
Vol 9 (5) ◽  
pp. 433-441
Author(s):  
Alimorad Sharifi ◽  
Nasim Mansouri ◽  
Babak Saffari ◽  
Shahram Moeeni

Sign in / Sign up

Export Citation Format

Share Document