Neural-dynamics-enabled Jacobian inversion for model-based kinematic control of multi-section continuum manipulators

2021 ◽  
Vol 103 ◽  
pp. 107114
Author(s):  
Ning Tan ◽  
Mingwei Huang ◽  
Peng Yu ◽  
Tao Wang
2016 ◽  
Vol 63 (8) ◽  
pp. 5022-5035 ◽  
Author(s):  
Peng Qi ◽  
Chuang Liu ◽  
Ahmad Ataka ◽  
H. K. Lam ◽  
Kaspar Althoefer

2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Jianhua Li ◽  
Yuanyuan Zhou ◽  
Chongyang Wang ◽  
Zhidong Wang ◽  
Hao Liu

Abstract The shape prediction of tendon-driven continuum manipulators is a challenging problem due to the effect of inner friction and external force. Many researchers use actuation displacement or actuation force as model input to predict the shapes of manipulators, but very few consider their relations and models able to predict the status of friction. This paper proposes a model-based method that combines the mechanics model with the kinematic model to predict the shapes of planar single-segment manipulators with consideration of external force and friction. Finally, the shape prediction of manipulators is converted to an optimization problem with actuation displacement and actuation force as the inputs of our algorithm. The distribution of tendon force and the situation of friction can be calculated by using the feedback data of the actuation unit even when actuation direction changes and hysteresis occurs. Experimental results indicate that the method has good performance in predicting the manipulator’s shapes.


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2001 ◽  
Vol 7 (S2) ◽  
pp. 578-579
Author(s):  
David W. Knowles ◽  
Sophie A. Lelièvre ◽  
Carlos Ortiz de Solόrzano ◽  
Stephen J. Lockett ◽  
Mina J. Bissell ◽  
...  

The extracellular matrix (ECM) plays a critical role in directing cell behaviour and morphogenesis by regulating gene expression and nuclear organization. Using non-malignant (S1) human mammary epithelial cells (HMECs), it was previously shown that ECM-induced morphogenesis is accompanied by the redistribution of nuclear mitotic apparatus (NuMA) protein from a diffuse pattern in proliferating cells, to a multi-focal pattern as HMECs growth arrested and completed morphogenesis . A process taking 10 to 14 days.To further investigate the link between NuMA distribution and the growth stage of HMECs, we have investigated the distribution of NuMA in non-malignant S1 cells and their malignant, T4, counter-part using a novel model-based image analysis technique. This technique, based on a multi-scale Gaussian blur analysis (Figure 1), quantifies the size of punctate features in an image. Cells were cultured in the presence and absence of a reconstituted basement membrane (rBM) and imaged in 3D using confocal microscopy, for fluorescently labeled monoclonal antibodies to NuMA (fαNuMA) and fluorescently labeled total DNA.


Sign in / Sign up

Export Citation Format

Share Document