continuum manipulators
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 61)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Zhiyuan Zhang ◽  
Songtao Wang ◽  
Deshan Meng ◽  
Xueqian Wang ◽  
Bin Liang

2021 ◽  
Vol 15 (5) ◽  
pp. 696-705
Author(s):  
Mohamed Tahir Shoani ◽  
Mohamed Najib Ribuan ◽  
Ahmad Athif Mohd Faudzi ◽  
◽  
◽  
...  

Soft continuum manipulators are comprised of flexible materials in a serpentine shape. Such manipulators can be controlled mechanically through tendons or pneumatic muscles. Continuum manipulators utilizing tendons are traditionally formed in a thick cross section, which presents limitations in achieving a high bending range as well as difficulties for storage and transportation. This study introduces a continuum manipulator comprised of two thin plastic bands and driven by a tendon to provide a bending action. The manipulator’s thin body form enables it to be rolled up for storage and transportation. Experimental results on different section lengths show the possibility of achieving a horizontal displacement of up to 34% of the bending-segment’s length, and a full closed-loop curvature for most segments. However, the results also indicated an elongation of the tip paths owing to gravity. These results, in addition to the manipulator’s flexibility and light weight features, confirm its suitability for applications in space and underwater environments.


2021 ◽  
Vol 163 ◽  
pp. 104380
Author(s):  
Genliang Chen ◽  
Yezheng Kang ◽  
Zhenkun Liang ◽  
Zhuang Zhang ◽  
Hao Wang

2021 ◽  
Vol 8 ◽  
Author(s):  
Peter Lloyd ◽  
Zaneta Koszowska ◽  
Michele Di Lecce ◽  
Onaizah Onaizah ◽  
James H. Chandler ◽  
...  

Soft continuum manipulators have the potential to replace traditional surgical catheters; offering greater dexterity with access to previously unfeasible locations for a wide range of interventions including neurological and cardiovascular. Magnetically actuated catheters are of particular interest due to their potential for miniaturization and remote control. Challenges around the operation of these catheters exist however, and one of these occurs when the angle between the actuating field and the local magnetization vector of the catheter exceeds 90°. In this arrangement, deformation generated by the resultant magnetic moment acts to increase magnetic torque, leading to potential instability. This phenomenon can cause unpredictable responses to actuation, particularly for soft, flexible materials. When coupled with the inherent challenges of sensing and localization inside living tissue, this behavior represents a barrier to progress. In this feasibility study we propose and investigate the use of helical fiber reinforcement within magnetically actuated soft continuum manipulators. Using numerical simulation to explore the design space, we optimize fiber parameters to enhance the ratio of torsional to bending stiffness. Through bespoke fabrication of an optimized helix design we validate a single, prototypical two-segment, 40 mm × 6 mm continuum manipulator demonstrating a reduction of 67% in unwanted twisting under actuation.


Mechatronics ◽  
2021 ◽  
Vol 76 ◽  
pp. 102573
Author(s):  
Enrico Franco ◽  
Arnau Garriga Casanovas ◽  
Jacky Tang ◽  
Ferdinando Rodriguez y Baena ◽  
Alessandro Astolfi

Sign in / Sign up

Export Citation Format

Share Document