Background and pickup ion velocity distribution dynamics in Titan’s plasma environment: 3D hybrid simulation and comparison with CAPS T9 observations

2011 ◽  
Vol 48 (6) ◽  
pp. 1114-1125 ◽  
Author(s):  
A.S. Lipatov ◽  
E.C. Sittler ◽  
R.E. Hartle ◽  
J.F. Cooper ◽  
D.G. Simpson
2006 ◽  
Vol 24 (3) ◽  
pp. 1113-1135 ◽  
Author(s):  
S. Simon ◽  
A. Bößwetter ◽  
T. Bagdonat ◽  
U. Motschmann ◽  
K.-H. Glassmeier

Abstract. Titan possesses a dense atmosphere, consisting mainly of molecular nitrogen. Titan's orbit is located within the Saturnian magnetosphere most of the time, where the corotating plasma flow is super-Alfvénic, yet subsonic and submagnetosonic. Since Titan does not possess a significant intrinsic magnetic field, the incident plasma interacts directly with the atmosphere and ionosphere. Due to the characteristic length scales of the interaction region being comparable to the ion gyroradii in the vicinity of Titan, magnetohydrodynamic models can only offer a rough description of Titan's interaction with the corotating magnetospheric plasma flow. For this reason, Titan's plasma environment has been studied by using a 3-D hybrid simulation code, treating the electrons as a massless, charge-neutralizing fluid, whereas a completely kinetic approach is used to cover ion dynamics. The calculations are performed on a curvilinear simulation grid which is adapted to the spherical geometry of the obstacle. In the model, Titan's dayside ionosphere is mainly generated by solar UV radiation; hence, the local ion production rate depends on the solar zenith angle. Because the Titan interaction features the possibility of having the densest ionosphere located on a face not aligned with the ram flow of the magnetospheric plasma, a variety of different scenarios can be studied. The simulations show the formation of a strong magnetic draping pattern and an extended pick-up region, being highly asymmetric with respect to the direction of the convective electric field. In general, the mechanism giving rise to these structures exhibits similarities to the interaction of the ionospheres of Mars and Venus with the supersonic solar wind. The simulation results are in agreement with data from recent Cassini flybys.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
K. Quest ◽  
M. Rosenberg ◽  
B. Kercher

The dust acoustic, or dust density, wave is a very low frequency collective mode in a dusty plasma that is associated with the motion of the charged and massive dust grains. An ion flow due to an electric field can excite these waves via an ion–dust streaming instability. Theories of this instability have often assumed a shifted-Maxwellian ion velocity distribution. Recently, the linear kinetic theory of this instability was considered using a non-Maxwellian ion velocity distribution (Kählert, Phys. Plasmas, vol. 22, 2015, 073703). In this paper, we present one-dimensional PIC simulations of the nonlinear development of the ion–dust streaming instability, comparing the results for these two types of ion velocity distributions, for several values of the ion drift speed and collision rate. Parameters are considered that reflect the ordering of plasma and dust quantities in laboratory dusty plasma experiments. It is found that, in general, the wave energy density is smaller in the simulations with a non-Maxwellian ion distribution.


Sign in / Sign up

Export Citation Format

Share Document