magnetohydrodynamic models
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5413
Author(s):  
Ciro Alberghi ◽  
Luigi Candido ◽  
Raffaella Testoni ◽  
Marco Utili ◽  
Massimo Zucchetti

Liquid metal breeding blankets are extensively studied in nuclear fusion. In the main proposed systems, the Water Cooled Lithium Lead (WCLL) and the Dual Coolant Lithium Lead (DCLL), the liquid metal flows under an intense transverse magnetic field, for which a magnetohydrodynamic (MHD) effect is produced. The result is the alteration of all the flow features and the increase in the pressure drops. Although the latter issue can be evaluated with system models, 3D MHD codes are of extreme importance both in the design phase and for safety analyses. To test the reliability of COMSOL Multiphysics for the development of MHD models, a method for verification and validation of magnetohydrodynamic codes is followed. The benchmark problems solved regard steady state, fully developed flows in rectangular ducts, non-isothermal flows, flow in a spatially varying transverse magnetic field and two different unsteady turbulent problems, quasi-two-dimensional MHD turbulent flow and 3D turbulent MHD flow entering a magnetic obstacle. The computed results show good agreement with the reference solutions for all the addressed problems, suggesting that COMSOL can be used as software to study liquid metal MHD problems under the flow regimes typical of fusion power reactors.


Author(s):  
P. Riley ◽  
R. Lionello ◽  
R. M. Caplan ◽  
C. Downs ◽  
J. A. Linker ◽  
...  

2020 ◽  
Author(s):  
Chuanfei Dong ◽  
Meng Jin ◽  
Manasvi Lingam

<p>The recent discovery of an Earth-sized planet (TOI-700 d) in the habitable zone of an early-type M-dwarf by the Transiting Exoplanet Survey Satellite constitutes an important advance. In this Letter, we assess the feasibility of this planet to retain an atmosphere – one of the chief ingredients for surface habitability – over long timescales by employing state-of-the-art magnetohydrodynamic models to simulate the stellar wind and the associated rates of atmospheric escape. We take two major factors into consideration, namely, the planetary atmospheric composition and magnetic field. In all cases, we determine that the atmospheric ion escape rates are potentially a few orders of magnitude higher than the inner Solar system planets, but TOI-700 d is nevertheless capable of retaining a 1 bar atmosphere over gigayear timescales for certain regions of the parameter space. The simulations show that the unmagnetized TOI-700 d with a 1 bar Earth-like atmosphere could be stripped away rather quickly (< 1 gigayear), while the unmagnetized TOI-700 d with a 1 bar CO<sub>2</sub>-dominated atmosphere could persist for many billions of years; we find that the magnetized Earth-like case falls in between these two scenarios. We also discuss the prospects for detecting radio emission of the planet (thereby constraining its magnetic field) and discerning the presence of an atmosphere.</p>


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
Manasvi Lingam ◽  
Philip J. Morrison ◽  
Alexander Wurm

A Hamiltonian and action principle formalism for deriving three-dimensional gyroviscous magnetohydrodynamic models is presented. The uniqueness of the approach in constructing the gyroviscous tensor from first principles and its ability to explain the origin of the gyromap and the gyroviscous terms are highlighted. The procedure allows for the specification of free functions, which can be used to generate a wide range of gyroviscous models. Through the process of reduction, the noncanonical Hamiltonian bracket is obtained and briefly analysed.


2020 ◽  
Vol 497 (2) ◽  
pp. 1434-1442
Author(s):  
S Komarov ◽  
C Reynolds ◽  
E Churazov

ABSTRACT We investigate how different magnetohydrodynamic models of propagation of a weak (Mach number ∼1.2) shock in the core of a galaxy cluster affect its observational appearance, using the Perseus cluster as our fiducial model. In particular, we study how thermal conduction, both isotropic and anisotropic, and ion–electron temperature equilibration modify a weak shock. Strong thermal conduction is expected to produce an electron temperature precursor. Less prominent pressure and density precursors are formed as well. A longer equilibration time largely reduces the density precursor but does not change the electron temperature precursor much. When thermal conduction becomes anisotropic, the intracluster magnetic field imprints its characteristic spatial scale on the distortions of the shock induced by heat fluxes.


2018 ◽  
Vol 861 ◽  
pp. 382-406 ◽  
Author(s):  
Oliver G. W. Cassells ◽  
Tony Vo ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to elucidate the linear transient growth mechanisms in a uniform duct with square cross-section applicable to flows of electrically conducting fluids under the influence of an external magnetic field. A particular focus is given to the question of whether at high magnetic fields purely two-dimensional mechanisms exist, and whether these can be described by a computationally inexpensive quasi-two-dimensional model. Two Reynolds numbers of $5000$ and $15\,000$ and an extensive range of Hartmann numbers $0\leqslant \mathit{Ha}\leqslant 800$ were investigated. Three broad regimes are identified in which optimal mode topology and non-modal growth mechanisms are distinct. These regimes, corresponding to low, moderate and high magnetic field strengths, are found to be governed by the independent parameters; Hartmann number, Reynolds number based on the Hartmann layer thickness $R_{H}$ and Reynolds number built upon the Shercliff layer thickness $R_{S}$, respectively. Transition between regimes respectively occurs at $\mathit{Ha}\approx 2$ and no lower than $R_{H}\approx 33.\dot{3}$. Notably for the high Hartmann number regime, quasi-two-dimensional magnetohydrodynamic models are shown to be excellent predictors of not only transient growth magnitudes, but also the fundamental growth mechanisms of linear disturbances. This paves the way for a precise analysis of transition to quasi-two-dimensional turbulence at much higher Hartmann numbers than is currently achievable.


2017 ◽  
Vol 847 (1) ◽  
pp. 40 ◽  
Author(s):  
K. Reitberger ◽  
R. Kissmann ◽  
A. Reimer ◽  
O. Reimer

Sign in / Sign up

Export Citation Format

Share Document