Optimal design of wind turbine airfoils based on functional integral and curvature smooth continuous theory

2016 ◽  
Vol 55 ◽  
pp. 34-42 ◽  
Author(s):  
Quan Wang ◽  
Jun Wang ◽  
Jinfeng Sun ◽  
Jun Ren ◽  
Qiong Wei
2014 ◽  
Vol 705 ◽  
pp. 313-319
Author(s):  
Ya Qiong Chen ◽  
Yue Fa Fang ◽  
Sheng Guo ◽  
Zhi Hong Chen

Based on the functional expression methods of wind turbine airfoils, the method of the correction to parameter factors of shape function by iterative calculation in the principle of making the residual error minimum between the fitting airfoil and the target airfoil is presented in this paper, which makes the fitting precision improved compared with the parametric representation of original airfoils. The method of the correction to parameter factors of shape function proposed in this paper is used for parametric representation of more than 20 kinds of typical airfoils and then the geometric and aerodynamic convergence are intensive studied. The results show that the minimal order of the integrated expression of airfoils is decreased by the proposed method in this paper and the mathematical models of airfoils which facilitate the unification of optimal design are established.


2013 ◽  
Vol 6 (4) ◽  
pp. 147-151 ◽  
Author(s):  
Young-Jun Park ◽  
Geun-Ho Lee ◽  
Jin-Seop Song ◽  
Yong-Yun Nam ◽  
Ju-Seok Nam

Energy ◽  
2019 ◽  
Vol 185 ◽  
pp. 90-101 ◽  
Author(s):  
Li Guoqiang ◽  
Zhang Weiguo ◽  
Jiang Yubiao ◽  
Yang Pengyu

2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


Sign in / Sign up

Export Citation Format

Share Document