Characterisation of LDLR variants in the initiation codon

2021 ◽  
Vol 331 ◽  
pp. e187
Author(s):  
R. Graça ◽  
R. Fernandes ◽  
A.C. Alves ◽  
J. Menezes ◽  
L. Romão ◽  
...  
Keyword(s):  
1987 ◽  
Vol 6 (8) ◽  
pp. 2489-2492 ◽  
Author(s):  
A. C. Looman ◽  
J. Bodlaender ◽  
L. J. Comstock ◽  
D. Eaton ◽  
P. Jhurani ◽  
...  

2013 ◽  
Vol 94 (7) ◽  
pp. 1486-1495 ◽  
Author(s):  
Graham J. Belsham

The foot-and-mouth disease virus (FMDV) Leader (L) protein is produced in two forms, Lab and Lb, differing only at their amino-termini, due to the use of separate initiation codons, usually 84 nt apart. It has been shown previously, and confirmed here, that precise deletion of the Lab coding sequence is lethal for the virus, whereas loss of the Lb coding sequence results in a virus that is viable in BHK cells. In addition, it is now shown that deletion of the ‘spacer’ region between these two initiation codons can be tolerated. Growth of the virus precisely lacking just the Lb coding sequence resulted in a previously undetected accumulation of frameshift mutations within the ‘spacer’ region. These mutations block the inappropriate fusion of amino acid sequences to the amino-terminus of the capsid protein precursor. Modification, by site-directed mutagenesis, of the Lab initiation codon, in the context of the virus lacking the Lb coding region, was also tolerated by the virus within BHK cells. However, precise loss of the Lb coding sequence alone blocked FMDV replication in primary bovine thyroid cells. Thus, the requirement for the Leader protein coding sequences is highly dependent on the nature and extent of the residual Leader protein sequences and on the host cell system used. FMDVs precisely lacking Lb and with the Lab initiation codon modified may represent safer seed viruses for vaccine production.


Genetics ◽  
2010 ◽  
Vol 186 (4) ◽  
pp. 1187-1196 ◽  
Author(s):  
Lisa L. Maduzia ◽  
Anais Moreau ◽  
Nausicaa Poullet ◽  
Sebastien Chaffre ◽  
Yinhua Zhang

10.1038/5082 ◽  
1999 ◽  
Vol 21 (1) ◽  
pp. 128-132 ◽  
Author(s):  
Ling Liu ◽  
David Dilworth ◽  
Luzhang Gao ◽  
Jose Monzon ◽  
Ann Summers ◽  
...  
Keyword(s):  

1986 ◽  
Vol 6 (7) ◽  
pp. 2704-2711 ◽  
Author(s):  
D S Peabody ◽  
S Subramani ◽  
P Berg

In a previous report (S. Subramani, R. Mulligan, and P. Berg, Mol. Cell. Biol. 1:854-864, 1981), it was shown that mouse dihydrofolate reductase (DHFR) could be efficiently expressed from simian virus 40 recombinant viruses containing the DHFR cDNA in different locations in the viral late region. This was true even in the case of the SVGT7dhfr26 recombinant, which had the DHFR coding sequence 700 to 800 nucleotides from the 5' end of the mRNA, where it was preceded by the VP2 and VP3 initiator AUGs and a number of other noninitiator AUGs. To investigate the process of internal translation initiation in mammalian cells, we constructed a series of SVGT7dhfr recombinants in which the upstream VP2 and VP3 reading frame was terminated in various positions relative to the DHFR initiation codon. The efficient production of DHFR in infected CV1 cells depended on having the terminators of the VP2-VP3 reading frame positioned upstream or nearby downstream from the DHFR initiation codon. These results reinforce the notion that mammalian ribosomes are capable of translational reinitiation.


1999 ◽  
Vol 19 (1) ◽  
pp. 505-514 ◽  
Author(s):  
Emmanuelle Arnaud ◽  
Christian Touriol ◽  
Christel Boutonnet ◽  
Marie-Claire Gensac ◽  
Stéphan Vagner ◽  
...  

ABSTRACT Four isoforms of human fibroblast growth factor 2 (FGF-2) result from alternative initiations of translation at three CUG start codons and one AUG start codon. Here we characterize a new 34-kDa FGF-2 isoform whose expression is initiated at a fifth initiation codon. This 34-kDa FGF-2 was identified in HeLa cells by using an N-terminal directed antibody. Its initiation codon was identified by site-directed mutagenesis as being a CUG codon located at 86 nucleotides (nt) from the FGF-2 mRNA 5′ end. Both in vitro translation and COS-7 cell transfection using bicistronic RNAs demonstrated that the 34-kDa FGF-2 was exclusively expressed in a cap-dependent manner. This contrasted with the expression of the other FGF-2 isoforms of 18, 22, 22.5, and 24 kDa, which is controlled by an internal ribosome entry site (IRES). Strikingly, expression of the other FGF-2 isoforms became partly cap dependent in vitro in the presence of the 5,823-nt-long 3′ untranslated region of FGF-2 mRNA. Thus, the FGF-2 mRNA can be translated both by cap-dependent and IRES-driven mechanisms, the balance between these two mechanisms modulating the ratio of the different FGF-2 isoforms. The function of the new FGF-2 was also investigated. We found that the 34-kDa FGF-2, in contrast to the other isoforms, permitted NIH 3T3 cell survival in low-serum conditions. A new arginine-rich nuclear localization sequence (NLS) in the N-terminal region of the 34-kDa FGF-2 was characterized and found to be similar to the NLS of human immunodeficiency virus type 1 Rev protein. These data suggest that the function of the 34-kDa FGF-2 is mediated by nuclear targets.


2017 ◽  
Vol 5 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Anna E. von Bohlen ◽  
Johann Böhm ◽  
Ramona Pop ◽  
Diana S. Johnson ◽  
John Tolmie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document