intron boundary
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 288 (1963) ◽  
Author(s):  
Bin Fan ◽  
Dizhi Xie ◽  
Yanwei Li ◽  
Xulei Wang ◽  
Xin Qi ◽  
...  

Teleosts show varied master sex determining (MSD) genes and sex determination (SD) mechanisms, with frequent turnovers of sex chromosomes. Tracing the origins of MSD genes and turnovers of sex chromosomes in a taxonomic group is of particular interest in evolutionary biology. Oyster pompano ( Trachinotus anak ), a marine fish, belongs to the family Carangidae, in which 17b-hydroxysteroid dehydrogenase 1 ( hsd17b1 ) has repeatedly evolved to an MSD gene. Whole-genome resequencing identified a single nucleotide polymorphism (SNP) at chromosome 24 to be strictly associated with phenotypic sex, with females being the heterozygous sex. This SNP is located in a splicing site at the first exon/intron boundary of hsd17b1 . The Z-linked SNP results in malfunction of all spliced isoforms, whereas the W-linked isoforms were predicted to have open reading frames that are conserved among vertebrates, suggesting that hsd17b1 is a female-determining gene. The differential alternative splicing patterns of ZZ and ZW genotypes were consistently observed both in undifferentiated stages and differentiated gonads. We observed elevated recombination around the SD locus and no differentiation between Z and W chromosomes. The extreme diversity of mutational mechanisms that hsd17b1 evolves to an MSD gene highlights frequent in situ turnovers between sex chromosomes in the Carangidae.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Guangzhi Yuan ◽  
Qiang Su ◽  
Wenjun Liao ◽  
Wei Hou ◽  
Linke Huang ◽  
...  

Objectives. To discuss the mutational features and their relationships with disease in a family with hereditary multiple osteochondroma (HMO) from Guangxi Province (GXBB-1 family), China. Methods. Genomic DNA and total mRNA were extracted from peripheral blood cells of GXBB-1 family members. Whole elements of the EXT1gene and its transcript, including exons, introns, exon-intron boundaries, and coding sequence (CDS) clones, were amplified and sequenced. Allele-specific PCR was used to confirm the position and type of mutation. Results. All patients from the GXBB-1 family harbored the cosegregating heterozygous c.1056+1G>A mutation located in EXT1at an exon-intron boundary. Another three single-nucleotide polymorphisms (SNPs) were also detected in the patients, including IVS2+1G>A in intron 2, c.1844 T>C [p.Pro (CCT) 614Pro (CCC)] in exon 3, and c.2534G>A [p.Glu (GAG) 844Glu (GAA)] in exon 9. The latter two SNPs were synonymous variations. Conclusions. The heterozygous c.1056+1G>A mutation cosegregated with the phenotype, indicating that it is a pathogenic mutation in the GXBB-1 family. This mutation is reported for the first time in Chinese HMO patients. IVS2+1G>A and c.2534G>A have no relationship with the occurrence of disease. However, c.1844 T>C and c.1056+1G>A are linked, and their interaction needs to be further studied. c.1844T>C is a new SNP that has not been reported internationally.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 992
Author(s):  
Songshan Li ◽  
Mengke Li ◽  
Limei Sun ◽  
Xiujuan Zhao ◽  
Ting Zhang ◽  
...  

The VCAN/versican gene encodes an important component of the extracellular matrix, the chondroitin sulfate proteoglycan 2 (CSPG2/versican). Heterozygous variants targeting exon 8 of VCAN have been shown to cause Wagner disease, a rare autosomal dominant non-syndromic vitreoretinopathy that induces retinal detachment, cataracts and permanent visual loss. In this study, we report on six patients from three unrelated families with Wagner disease in whom we identified three novel copy number variations of VCAN. Quantitative real-time polymerase chain reaction analysis identified deletions, including one exon–intron boundary of exon 8 or both exons 8 and 9, causing the haploinsufficiency of VCAN mRNAs.


2019 ◽  
Vol 47 (4) ◽  
pp. 1187-1196 ◽  
Author(s):  
Silvia Costa ◽  
Caroline Dean

Abstract Polycomb-mediated epigenetic silencing is central to correct growth and development in higher eukaryotes. The evolutionarily conserved Polycomb repressive complex 2 (PRC2) transcriptionally silences target genes through a mechanism requiring the histone modification H3K27me3. However, we still do not fully understand what defines Polycomb targets, how their expression state is switched from epigenetically ON to OFF and how silencing is subsequently maintained through many cell divisions. An excellent system in which to dissect the sequence of events underlying an epigenetic switch is the Arabidopsis FLC locus. Exposure to cold temperatures progressively induces a PRC2-dependent switch in an increasing proportion of cells, through a mechanism that is driven by the local chromatin environment. Temporally distinct phases of this silencing mechanism have been identified. First, the locus is transcriptionally silenced in a process involving cold-induced antisense transcripts; second, nucleation at the first exon/intron boundary of a Polycomb complex containing cold-induced accessory proteins induces a metastable epigenetically silenced state; third, a Polycomb complex with a distinct composition spreads across the locus in a process requiring DNA replication to deliver long-term epigenetic silencing. Detailed understanding from this system is likely to provide mechanistic insights important for epigenetic silencing in eukaryotes generally.


Author(s):  
Heng Xia ◽  
Dong Chen ◽  
Qijia Wu ◽  
Gang Wu ◽  
Yanhong Zhou ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ya-Chao He ◽  
Pei Huang ◽  
Qiong-Qiong Li ◽  
Qian Sun ◽  
Dun-Hui Li ◽  
...  

Background.HTRA2has already been nominated as PARK13 which may cause Parkinson’s disease, though there are still discrepancies among these results. Recently, Gulsuner et al.’s study found thatHTRA2p.G399S is responsible for hereditary essential tremor and homozygotes of this allele develop Parkinson’s disease by examining a six-generation family segregating essential tremor and essential tremor coexisting with Parkinson’s disease. We performed this study to validate the condition ofHTRA2gene in Chinese familial essential tremor and familial Parkinson’s disease patients, especially essential tremor.Methods. We directly sequenced all eight exons, exon-intron boundaries, and part of the introns in 101 familial essential tremor patients, 105 familial Parkinson’s disease patients, and 100 healthy controls.Results. No exonic variant was identified, while one exon-intron boundary variant (rs2241028) and one intron variant (rs2241027) were detected, both with no clinical significance and uncertain function. There was no difference in allele, genotype, and haplotype between groups.Conclusions.HTRA2exonic variant might be rare among Chinese Parkinson’s disease and essential tremor patients with family history, andHTRA2may not be the cause of familial Parkinson’s disease and essential tremor in China.


Sign in / Sign up

Export Citation Format

Share Document