Intercomparison of planetary boundary layer parameterization and its impacts on surface ozone concentration in the WRF/Chem model for a case study in Houston/Texas

2014 ◽  
Vol 96 ◽  
pp. 175-185 ◽  
Author(s):  
G.C. Cuchiara ◽  
X. Li ◽  
J. Carvalho ◽  
B. Rappenglück
2011 ◽  
Vol 139 (3) ◽  
pp. 521-541 ◽  
Author(s):  
Ferdinando De Tomasi ◽  
M. Marcello Miglietta ◽  
M. Rita Perrone

2010 ◽  
Vol 98 (1) ◽  
pp. 125-139 ◽  
Author(s):  
B. Suresh Kumar Reddy ◽  
K. Raghavendra Kumar ◽  
G. Balakrishnaiah ◽  
K. Rama Gopal ◽  
R.R. Reddy ◽  
...  

2013 ◽  
Vol 70 (6) ◽  
pp. 1795-1805 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Song-You Hong ◽  
Yign Noh ◽  
Jimy Dudhia

Abstract Turbulent kinetic energy (TKE) is derived from a first-order planetary boundary layer (PBL) parameterization for convective boundary layers: the nonlocal K-profile Yonsei University (YSU) PBL. A parameterization for the TKE equation is developed to calculate TKE based on meteorological profiles given by the YSU PBL model. For this purpose buoyancy- and shear-generation terms are formulated consistently with the YSU scheme—that is, the combination of local, nonlocal, and explicit entrainment fluxes. The vertical transport term is also formulated in a similar fashion. A length scale consistent with the K profile is suggested for parameterization of dissipation. Single-column model (SCM) simulations are conducted for a period in the second Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS2) intercomparison case. Results from the SCM simulations are compared with large-eddy simulation (LES) results. The daytime evolution of the vertical structure of TKE matches well with mixed-layer development. The TKE profile is shaped like a typical vertical velocity (w) variance, and its maximum is comparable to that from the LES. By varying the dissipation length from −23% to +13% the TKE maximum is changed from about −15% to +7%. After normalization, the change does not exceed the variability among previous studies. The location of TKE maximum is too low without the effects of the nonlocal TKE transport.


Sign in / Sign up

Export Citation Format

Share Document