scholarly journals Point cloud segmentation and classification of structural elements in multi-planar masonry building facades

2020 ◽  
Vol 118 ◽  
pp. 103232
Author(s):  
Fatemeh Hamid-Lakzaeian
Author(s):  
J. Zhao ◽  
X. Zhang ◽  
Y. Wang

Abstract. Indoor 3D point clouds semantics segmentation is one of the key technologies of constructing 3D indoor models,which play an important role on domains like indoor navigation and positioning,intelligent city, intelligent robot etc. The deep-learning-based methods for point cloud segmentation take on higher degree of automation and intelligence. PointNet,the first deep neural network which manipulate point cloud directly, mainly extracts the global features but lacks of learning and extracting local features,which causes the poor ability of segmenting the local details of architecture and affects the precision of structural elements segmentation . Focusing on the problems above,this paper put forward an automatic end-to-end segmentation method base on the modified PointNet. According to the characteristic that the intensity of different indoor structural elements differ a lot, we input the point cloud information of 3D coordinate, color and intensity into the feature space of points. Also,a MaxPooling is added into the original PointNet network to improve the ability of attracting and learning local features. In addition, replace the 1×1 convolution kernel of original PointNet with 3×3 convolution kernel in the process of attracting features to improve the segmentation precision of indoor point cloud. The result shows that this method improves the automation and precision of indoor point cloud segmentation for the precision achieves over 80% to segment the structural elements like wall,door and so on ,and the average segmentation precision of every structural elements achieves 66%.


2017 ◽  
Vol 9 (3) ◽  
pp. 288 ◽  
Author(s):  
Huan Ni ◽  
Xiangguo Lin ◽  
Jixian Zhang

Author(s):  
Mathieu Turgeon-Pelchat ◽  
Samuel Foucher ◽  
Yacine Bouroubi

GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Teng Miao ◽  
Weiliang Wen ◽  
Yinglun Li ◽  
Sheng Wu ◽  
Chao Zhu ◽  
...  

Abstract Background The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4–10 minutes to segment a maize shoot and consumes 10–20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


2021 ◽  
Vol 176 ◽  
pp. 237-249
Author(s):  
Aoran Xiao ◽  
Xiaofei Yang ◽  
Shijian Lu ◽  
Dayan Guan ◽  
Jiaxing Huang

2021 ◽  
Vol 437 ◽  
pp. 227-237
Author(s):  
Hongyan Li ◽  
Zhengxing Sun ◽  
Yunjie Wu ◽  
Youcheng Song

Sign in / Sign up

Export Citation Format

Share Document